
Time Series Prediction Using Grammar-directed Genetic
Programming Methods

Santi Garcia Carbajal

Abstract— We use a modified Genetic Programming System
to predict the values of the reduced set proposed as benchmark
for the ’07 Neural Forecasting Contest. Genetic Programming is
a well known method used in symbolic regression, and classifica-
tion, based in the evolution of arithmetic expressions according
to a fitness function. We introduce here a grammar into the
Genetic system, to let us use conditional expressions inside
the syntactic trees representing the solutions to the problem.
Additionally, we employ GA-P methods to automatically obtain
constants inside the expressions. Our results proof the known
power of Genetic Programming as a tool for solving Symbolic
Regression problems, as the obtained expressions fit acceptably
the proposed series. For the predicted values, some of them
seem promising while others present too flat behaviors.

I. INTRODUCTION. GENETIC PROGRAMMING

Genetic programming [1], [2] is a domain-independent
problem-solving approach in which computer programs are
evolved to solve a problem, or to find the best approximated
solution. It is is based on the Darwinian Theory of Evolution
-often paraphrased as “survival of the fittest”-.

The main idea consists of applying a Genetic Algorithm
[3] on a population of computer programs of varying sizes
and shapes. Although more complex approaches involving
memory and have been proposed, in a typical Genetic
Programming system the individuals are functions that de-
pend on a certain number of variables, represented by their
syntactic trees. An individual is a tree-like structure formed
by two types of genes:

• Functions, and
• Terminals

Terminals are leaves in the tree (nodes without branches),
and functions are nodes with a variable number of children.
The function’s children provide the arguments for the func-
tion.

After creation of an initial population of randomly gen-
erated trees, genetic operators are applied until the popu-
lation converges to a solution (may be a suboptimal one)
for the problem. Genetic operators are more complex in a
Genetic Programming approach than in a canonical Genetic
Algorithm, but are based on simple operations on the trees
representing solutions, and will be further explained in this
section.

In a Genetic Programming system, the steps towards the
solution of a problem can be formulated in the following
manner (see figure 1):

Santi Garcia is a Senior Lecturer at the Department of Computer Science,
Oviedo University, Gijon, Spain (phone: 985-182-487; fax: 985-182-156;
email: sgarcia@uniovi.es).

1) Generate an initial population of random individuals,
composing the terminal (variables) and non terminal
(functions) symbols. The quality of the solutions in-
cluded in the initial population will be typically very
poor.

2) Iteratively perform the following sub-steps until the
maximum number of generation is reached, or the
termination criterion has been satisfied:

a) Execute each program in the population and as-
sign it a numerical fitness value using the fitness
function.

b) Create a new population of computer programs
by applying following genetic operators.
• Reproduction: a randomly chosen individual is

copied from the current generation to the next.
• Crossover: operates on two programs included

in the population, and produces two child pro-
grams. Two random nodes are selected from
within each program and then the resultant
“sub-trees” are swapped, generating two new
programs. These new programs become part
of the next generation of programs to be eval-
uated. figure 2 shows two randomly chosen
individuals in the population, and the crossover
points (randomly chosen, too), applying the op-
erator. The offspring produced by the crossover
operator is shown in the same figure.

• Mutation: Create one new computer program
from one existing program by mutating a ran-
domly chosen node. See figure 3.

3) If the termination criterion is satisfied, or the maximum
number of generations is reached, the current best
individual in the population is proposed as the solution
to the problem.

A. GA-P techniques.

GA-P technique [4] is an hybrid between genetic algo-
rithms and genetic programming, which was first used in
symbolic regression problems. Individuals in GA-P have two
parts: a tree based representation and a set of numerical
parameters. Different from canonical GP, the terminal nodes
of the tree store not only numbers and variables, but linguistic
identifiers that are pointers to a set of real numbers (see figure
4.) The behavior of the GA-P algorithm is mainly due to
its crossover operator. Either or both parts of the individual
may be selected and crossed. We have previously employed
GA-P algorithms in the identification and control of complex
dynamical processes, and in classification problems [5].

Designate Solution

Reproduction

Create Initial
Population

Terminat.
Criterion?

End

Yes

No

of
each individual

Individuals = 0

Individuals
= M ? G = G + 1

Yes

No

Select genetic
operator

probabilistically

Evaluate Fitness

Crossover Mutation

Individuals + 2 Individuals + 1 Individuals + 1

Fig. 1. Genetic Programming flowchart

A

K

NOT OR

OR

AND

AND

A B

M

J AND

A

Parent 1 Parent 2

Crossover Point 1 Crossover Point 2

A

OR

K

NOT OR

AND

A B

M

AND

A

AND

J

Offspring 1 Offspring 2

Fig. 2. Progenitors for the crossover operator (left). Offspring produced
by the operator (right)

B. Experimental Setup

In any Genetic Programming method, the following pa-
rameters of the algorithm must be defined:

1) the terminal set, T .
2) the function set, F .
3) the goal, and a fitness function capable of evaluate the

performance of any valid individual.
4) the set of parameters of the algorithm.
5) the method for designating a solution and the criterion

for terminating a run.

All these parameters are listed in table I. All the exper-
iments were performed with a population of ten thousand
individuals, finishing when the maximum number of gen-
erations is reached (current=g=200). The initial maximum
depth of the syntactic trees is set to a value of ten. The
obtained arithmetic expressions include addition, subtraction,
multiplication, and division, plus the C-style conditional
operator. The fitness function, that allows us to determine
how good is an individual in the prediction work is explained

OROR

M

J

A

OR

Offspring

M

J AND

A

Parent

Mutation Point

Fig. 3. Effect of the mutation operator

K1 *

−

K2X

2 13 6

K1 K2 K3 K4

GP Part

GA Part

Fig. 4. Representation of a generic individual in GA-P techniques. GA-P
individuals consist of two parts: a tree and a set of numerical constants.
Genetic operators can take place in the tree (GP part), or in the set of
constants (GA part)

in the next section.

TABLE I

PARAMETER SET

Objective Time series prediction
Function Set +-,*,/,sin,cos, cond
Terminal Set {X0..X9}

Fitness Cases (Fc) 1 for each series
Fitness Function F (τ) =

P

t=K

t=0
|P (t) − S(t)|

Population Size M=10000
Generations G=200

Mutation Rate 0.05
Maximum Initial Depth 10
Termination Criterion g=G

C. Fitness Function. Forecasting method

Let S(t) be the value of the series to be predicted at
time t. We calculate the predicted value for that point, P (t),
as the result of the evaluation of the best individual in the
population (syntactic tree), mapping the previous ten values
of S to the variables appearing in the tree. See figure 5.

Let P (t) be the predicted value for the same time step
(P (t) is actually a function of the previous ten values of
S(t)). We call to Observation Window the set of values of S

that we use to predict the next value, at any point inside the
interval of study. The Fitness Function of a syntactic tree, τ

whose terminal symbols will represent some of the values of
the Observation Window, is calculated as follows:

F (τ) =
t=K∑

t=0

|P (t) − S(t)|, (1)

being K the maximum length of the interval. The goal for the
Genetic System is to minimize the value of F, searching for

0X 9X

Prediction

known values

Syntactic Tree Evaluated Value

Fig. 5. Forecasting. Fitness function. The previous values of the series are
mapped into the terminal nodes of the syntactic tree, and a prediction value
is computed.

arithmetic expressions that fit the proposed series as much
as possible.

At any step of the prediction, we use the values of the
previous ten values of the series. Consequently, we can make
no prediction for these ten initial values. After this point is
passed, the window is displaced at each step. Figure 5 shows
how the known values of the series are used as input for
the evaluation of the syntactic trees, and the prediction is
calculated.

The observation window is displaced over all the known
range of the series. At each point, the difference between the
predicted and the actual value of the series is calculated, and
Fitness Function. Best individual in the population will be
the one with lower error. See figure 6.

known values

predicted values

. .
t=0

t=1
t=2

Fig. 6. Forecasting. Displacement of the observation window. The first ten
values are used to calculate the first prediction. The difference is computed
and the window is then displaced.

When the Observation Window reach the first point outside
the provided data, the predicted values are used themselves,
and here is where the obtained expressions behave worse,

apparently.

II. MAIN RESULTS

Figures 7,8 and 9 show the results we have obtained for
each one of the eleven series included in the reduced dataset.
Each plot shows the actual values of the series, and the
predicted values inside and outside the known interval. Due
to the lack of knowledge about the actual values of the series
outside the training interval, we can only say that results for
series 1,2, and 4 seem more promising than the others, being
apparently bad for series 6, 7, and 8. Inside the training
intervals, the behavior of the obtained expressions is very
similar for all the examples.

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#1
Prediction

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#2
Prediction

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#3
Prediction

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140

Step

Prediction Results.

Actual serie#4
Prediction

Fig. 7. Preliminary results

3400

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#5
Prediction

3500

4000

4500

5000

5500

6000

6500

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#6
Prediction

3300

3400

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#7
Prediction

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140

Step

Prediction Results.

Actual serie#8
Prediction

Fig. 8. Preliminary results

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 20 40 60 80 100 120 140

Step

Prediction Results.

Actual serie#9
Prediction

0

2000

4000

6000

8000

10000

12000

14000

16000

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#10
Prediction

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 20 40 60 80 100 120 140 160

Step

Prediction Results.

Actual serie#11
Prediction

Fig. 9. Preliminary results

III. CONCLUSIONS

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[2] ——, “Genetic programming: On the programming of computers by
means of natural selection,” Statistics and Computing, vol. 4, no. 2,
June 1994.

[3] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[4] L. M. Howard and D. J. D’Angelo, “The GA–P: A genetic algorithm
and genetic programming hybrid,” IEEE Expert, vol. 10, no. 3, pp.
11–15, June 1995.

[5] S. Garca, F. Gonzlez, and L. Snchez, “Evolving fuzzy rule based clas-
sifiers with GAP: A grammatical approach,” in Genetic Programming,
Proceedings of EuroGP’99, ser. LNCS, R. Poli, P. Nordin, W. B.
Langdon, and T. C. Fogarty, Eds., vol. 1598. Goteborg, Sweden:
Springer-Verlag, 26-27 May 1999, pp. 203–210.

