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1. Introduction  
 

During the decades researchers across the 
globe have used various techniques in order 
to achieve forecasting capability of time 
series. From a simple ARIMA model to 
Artificial Intelligence approaches dispute still 
divides the science community regarding 
which method can yield the best forecast. 
Amid these controversies Neural Networks 
which where first proposed for forecasting in 
the late 1980�s - early 1990�s, still dominate 
and continue to gain more territory in our 
collective consciousness  as an efficient 
technique to predict the future.  

Despite the various Neural Network 
models that already exist in the contemporary 
bibliography, the answer to the question 
which one of those performs better still elude 
us. The most commonly used however is 
Artificial Neural Network with feed forward 
back propagation algorithm (FFBP) which 
has been a subject of research in order to test 
its efficiency more than any other model. By 
some recent estimates it accounts for the 90 
percent of all Neural Network applications 
and in particular occasions it performed 
adequately well. Its architecture initially 
involves empirical trial and error testing 
regarding the number of neurons in each 
layer as well as the number of layers that will 
be used.  The inputs as well as a set of 
weights that are allocated to each separate 
neuron, are propagated forward to the 
neurons of the consecutive hidden layer. 
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There, under the application of an activation 
function they are forwarded to the following 
`the optimal weights that minimize an error 
function (usually Square Error Function) is 
gradient decent or other alternatives like 
conjugate gradient. Of course a variety of 
other training approaches are implemented 
until a certain tolerance error value is 
reached. Although FFBB Neural Networks 
are a universal functional approach, there are 
some shortcomings as the model�s efficiency 
to avoid multiple local minima.  

The development of other alternatives 
including Hopfield networks (Recurrent), 
Probabilistic, Fuzzy Logic, Self - Organized 
Networks etc, also share a part in the 
endeavor to make more accurate predictions 
under a Neural Network scope. In this paper 
however, in an attempt to approach one of 
the most contemporary forecasting model 
techniques, we implemented the Dynamic 
Architecture for Artificial Neural Networks 
(also known as DAN2). It was first 
developed by M.Ghiassi, H.Saiane (2005) 
and then in 2006 M.Ghiassi, H.Saiane, 
D.K.Zibra also implements it to number of 
commonly used in experiments time series. 
This model completely diverges from the 
common and it was a source of inspiration in 
our search for superior outcomes.  

 
 

 
2. Model description  

 
      The intuition behind DAN2 is based upon 
collecting and propagating gathered 
Knowledge as a whole rather than 
propagating the outputs of the activation 
functions of each individual neuron to the 
next layer. In this concept DAN2 can be seen 
as a simple feed forward neural network 
comprised of 
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an input layer, hidden layers and an output 
layer. The difference however between them 
is that in the latter we usually have to define 
not only the proper input variables but also 
the number of hidden layers as well as the 
number of neurons in each layer. In DAN2 
however, the number of neurons is fixed and 
the optimal number of hidden layers is found 
dynamically according to some minimum 
optimal criteria that have to be reached. Thus 
what is only required from the researcher is 
to identify the input variables. Throughout 
the years of experimentation a vast number 
of papers have been published in an attempt 
to set a certain framework, based on 
statistics, in order to identify proper inputs 
and architecture of a neural network. Some 
conspicuous examples are Medeiros et al. 
(2006), Swanson and White (1997), Refenes 
and Zapranis (1999) and so many others that 
attempted to clear the multidisciplinary 
nature of the subject. Despite all of these 
attempts there is a different point of view, as 
lots of other researchers regard input variable 
selection procedure actually as �an art� and 
thus it is a matter of pure experiment (trial 
and error) rather than an implementation of a 
theory in order to meet a number of certain 
criteria. 
 
     Encapsulating the architecture of DAN2, 
we can describe it as follows: first and 
foremost the inputs are disseminated to the 
network as a matrix, i.e. simultaneously, 
rather than one at a time providing in this 
way �a training environment that ensures 
monotonically increasing learning�2. After 
that this collective matrix is propagated to the 
hidden layers. Under the general concept of 
DAN2, at each layer we define the linear and 
the non-linear relationships of the data 
separately. We combine and forward them to 
the next layer as a whole accumulated 
knowledge, and then to the next one, until we 
reach the output when our criteria for optimal 
error tolerance are met. More precisely, each 
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hidden layer of DAN2 has a fixed number of 
neurons, which are four. The first is the so 
called �threshold unit� or C, which equals 1 
and plays the role of the constant in regular 
regression by OLS. The main neuron is the 
�Current accumulated Knowledge element� 
or CAKE and gathers knowledge of all 
previous layers. The third and the fourth 
neurons are the �current residual non-linear 
elements� or CURNOLE and have as a 
purpose to gather the non linear relationships 
of the data using as inputs all outputs of the 
previous layers. 
 
    

 
 
 

     The training procedure of DAN2 is 
similar to the backpropagation idea. The 
network is trained until an error function 
(usually the MSE or the SSE) falls under an 
acceptable value. Firstly, in a special layer, 
CAKE neuron captures the linear relationship 
between the inputs and the desired outputs, 
under the standard OLS concept. If the error 
criteria are met then the training stops and we 
have a linear relationship between the inputs 
and the output. In general the CAKE neuron 
combines linearly previous layers� CAKE, 
CURNOLE and C reassuring in this way that 
already gained Knowledge is not lost but 
readjusted and carried until the output neuron 
is reached. After the input data have been 
linearly transformed in the fist CAKE node, 
they are transformed in the subsequent nodes 
through an algorithm in order to capture the 
nonlinearities of the process. The algorithm 
that is used by the creators of DAN2 is a 
trigonometric function which is represented 
as follows: 
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 Cosine ( µαi  +θ)  
 
where αi  is an angle between the record i and 
the reference vector R, used to train the 
network and is updated at each subsequent 
node. It represents the transformed and 
normalized inputs while µ represents a 
coefficient and θ represents constant. In order 
to facilitate our calculations we replace θ 
with the following trigonometric equation: 
 

A Cosine ( µαi ) + B Sine ( µαi ) . 
 
The above equation is used by the 
CURNOLE nodes facilitating the reduction 
of the nonlinear parameters from one to two. 
If the equation does not sufficiently 
represents the nonlinearities that exist, an 
new layer with an extra node is added to the 
process as well as one more Cosine (µαi +θ) 
equation for this extra node. Taking into 
account what has already been mention 
above DAN2 differs from each contemporary 
opponents as its architecture is depended 
upon the complexity of the problem and is 
defines dynamically. The general equation 
that represents the combination of the 
elements of each layer k in order to produce 
the output is : 
 

Fk = αk + bkFk-1(Xi) + ckGk(Xi) + dkHk(Xi), 
 
 

where Xi is the n independent input record  
           Fk is the output of layer k 
           Gk(Xi) = Cosine ( µkαi ) 
           Hk(Xi) = Sine ( µkαi ) and 
           αk, bk, ck, dk , µk  are parameters for 
optimization at k iteration. 
 
    Our contribution to the above presented 
model will be the implementation of a more 
efficient algorithm in order to facilitate the 
estimation of the nonlinear parameter µk. 
While the first four parameters can be 
estimated by standard OLS, the nonlinear 
parameter will be estimated using the 
Conjugate Gradient algorithm. Additionally 
the Simulated Annealing algorithm will be 

used as a medium to avoid the classical 
problem of local minima. In brief, the 
obstacle of multiple minima rather than one 
global minimum is widely encountered in the 
neural network optimization procedures and 
that is particularly due to our decision when 
the gradient is zero. In this concept we 
should never prefer convergence based on 
small gradients but those based on upward 
trends of the gradient. Simulated Annealing 
assist an optimization by �randomly 
perturbing the independent variables (weights 
in the case of a neural network) and keeping 
track of the best (lowest error) function value 
for each randomized set of variables.�3  
Firstly we use a random number generator to 
produce as many as possible iterations in 
order to find those weights that give the 
minimum error, we keep track of those 
weights and we use them as a center from 
which perturbation for the next random 
number generator will begin with lower 
standard deviation this time.   
     Concerning the final model architecture 
DAN2 in contrast with the usual feed 
forward neural networks adds dynamically 
hidden layers of four neurons each until a 
specified accuracy measure or a certain 
number of iterations are reached. Moreover 
due to the dynamic nature of the model we 
add two further training stopping criteria so 
as to avoid under-fitting (alternatively under-
training) or over-fitting (over-training). In the 
first case in order to avoid such a problem we 
set stopping criterion ,ε1 = ( SSEk - SSEk+1 ) / 
SSEk ≤  ε1

* . This is to reassure that adding 
our neural network has the optimal number 
of layers and none redundant that could 
increase the overall prediction error or would 
make the process slower without adding any 
further Knowledge. Regarding the other more 
commonly encountered problem in 
forecasting using neural networks, this of an 
over-fitted model, there are an additional 
criterion set to overcome it. We use ε2 
=│MSET - MSEv │/ MSET ≤  ε2

*,where �T� 
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subscript stands for training and �V� for 
validation. The training procedure stops 
when the above criteria are fully met. 
Something that worths to be mentioned is 
that we should be extremely careful 
regarding the desired level we set for ε1 and 
ε2. This is because if this level is too low we 
will definitely reach it too soon and the 
whole model should then be reconsidered 
setting this time a new level for them. 
 

3. Model evaluation and results 
 

    For the evaluation of our model we will use a 
number of the most classical and widely used 
error functions like Mean Square Error, Mean 
Absolute Error, Mean Absolute Deviation and 
finally in the context of the competition�s 
requirements we will add Symmetric Mean 
Absolute Percent Error. Our results indicate a 
promising out-performance of the statistical 
methods mentioned even in problems involving 
long horizons and inadequate number of 
observations to forecast.   
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