
A Combined Neural Network/Gaussian Process

Regression Time Series Forecasting System for the

NN3 Competition

Nesreen K. Ahmed

Faculty of Computers and Information

Cairo University, Giza, Egypt

n.kamel@gmail.com

Amir F. Atiya

Dept Computer Engineering

Cairo University, Giza, Egypt

amir@alumni.caltech.edu

Neamat El Gayar

Faculty of Computers and Information

Cairo University, Giza, Egypt

hmg@link.net

Hisham El-Shishiny

IBM Center for Advanced Studies in Cairo

IBM Cairo Technology Development Center

Giza, Egypt

shishiny@eg.ibm.com

1 Introduction

In a recent study [1] we have conducted a large
scale empirical comparison of seven different ma-
chine learning models for time series forecasting
using the M3 benchmark data. The outcome of
this study is that the standard multilayer percep-
tron neural network (MLP) and Gaussian pro-
cess regression (GPR) have turned out to be re-
spectively the first and the second best meth-
ods. Taking cue from this study, we propose here
a combined model that applies MLP and GPR
using a number of different input preprocessing
methods. The model combination includes some

aspects of forecast combination using simple av-
eraging and model selection based on the train-
ing set and validation set performance. What
makes this competition challenging is the large
forecast horizon (the next eighteen points have
to be forecasted). The study in [1] was simply
for the one-step ahead case. We have devised in-
put preprocessing steps that seem to be suitable
for different forecast horizon ranges. In addition
to the machine learning part, we have carried out
a thorough preprocessing of the time series, in-
cluding deseasonalization (if needed), log trans-
formation, and scaling. Next section gives a de-
scription of the MLP model and the GPR model,

1

while Sections 3 and 4 provide the details of the
forecasting system. Section 5 details the overall
set-up, and Section 6 gives the validation results
of the developed models.

2 Models

2.1 Multilayer Perceptron (MLP)

The multilayer perceptron (often simply called
neural network) is perhaps the most popular net-
work architecture in use today both for classifi-
cation and regression. The network has a simple
interpretation as a form of input-output model,
with the weights and biases being the free param-
eters of the model. Such network can model func-
tions of arbitrary complexity, with the number
of hidden nodes determining the network com-
plexity. As is typically the practice, we have
considered the traditional one-hidden layer net-
work. Instead of using the well-known backprop-
agation algorithm for training, we have consid-
ered a second order optimization method called
Levenberg Marquardt, as this is generally known
to be more efficient (we use the Matlab function
trainlm). The number of hidden nodes is a crit-
ical parameter for MLP, as it determines the net-
work complexity. We have used five-fold valida-
tion to estimate the most suitable number for ev-
ery time series. We consider the candidate values
NH = [0, 1, 3, 5, 7]. Note that we have the possi-
bility of “having zero hidden nodes” (NH = 0),
meaning simply a linear model. Balkin and Ord
[2] have shown that the possibility of switching
to a linear model for some time series improved
performance. Concerning the other less key pa-
rameters and model details, we selected them as
follows. We have used the sigmoidal activation
functions for the hidden layer, and a linear out-
put layer. Training is performed for 500 epochs,
using a momentum term 0.2, and an adaptive
learning rate with initial value 0.01, an increase
step of 1.05 and a decrease step of 0.7.

2.2 Gaussian Processes (GP)

Gaussian process regression [5] is based on mod-
eling the observed responses of the different train-

ing data points (function values) as a multivari-
ate Gaussian random variable. For these function
values an a priori distribution is assumed that
guarantees smoothness properties of the function.
Specifically, the correlation between two function
values is high if the corresponding input vectors
are close (in Euclidean distance sense) and decays
as they go farther from each other. The posterior
distribution of a to-be-predicted function value
can then be obtained using the assumed prior
distribution using simple probability manipula-
tions.

Let V (X,X) denote the covariance matrix be-
tween the function values, where X is the matrix
of input vectors of the training set (let the (i, j)th

element of V (X,X) be V (xi, xj), where xi de-
notes the ith training input vector). A typical
covariance matrix is the following:

V (xi, xj) = σ2
fe−

‖xi−xj‖2

2α2 (1)

In addition, some independent zero-mean noise
having standard deviation σn is assumed to be
added to the function values to produce the ob-
served responses (target values).

Then, for a given input vector x∗, the predic-
tion ŷ∗ is derived as

ŷ∗ = E
(

y∗|X, y, x∗

)

= V (x∗,X)
[

V (X,X)+σ2
nI

]

−1
y

(2)
where y is the vector of target outputs (re-
sponse values) for the training set. For Gaus-
sian processes there are three key parameters:
σf , σn, and α. It will be prohibitive to use
a three-dimensional ten-fold validation approach
on these parameters. We opted for the model
selection algorithm proposed by Rasmussen and
Williams [5]. It is an algorithm that maximizes
the marginal likelihood function. The authors
make a point that such criterion function does
not favor complex models, and overfitting will
therefore be unlikely (unless there is a very large
number of hyperparameters).

3 Input Preprocessing

Let x(t) be the time series value at step t, and let
the forecast horizon be h. That is we would like

2

to forecast x(t + h) (not the whole range: x(t +
1), . . . , x(t + h)). We considered the following
inputs that are extracted from the time series:

1. Lagged time series values (LAGGED-VAL):
the inputs to the prediction model are
the lagged time series values x(t − (N −
1)h), . . . , x(t − h), x(t). The reason we go
back in steps of h is that we would like to
keep up with time resolution dictated by the
forecast horizon.

2. Taking moving averages (MOV-AVG): We
compute moving averages over rectangular
smoothing windows placed at different time
instants in the period previous to t:

ui(t) =
1

h

t−(i−1)h−1
∑

j=t−ih

x(j), i = 1, 2, . . . (3)

in addition to given x(t) as input as well.
The reason we add x(t) as input is that mov-
ing averages inspite of their nice smoothing
characteristics introduce a harmful lag ef-
fect. The addition of x(t) will make the given
information as recent as could be achieved.
We consider moving averages up to a certain
specified overall lag window J (for example
for a lag window of 24 months, we keep us-
ing delayed moving averages until we reach
the end of the lag window, so the lag window
will dictate the number of moving averages,
i.e. the number of inputs we use).

3. Exponential moving averages (EXP-MOV-
AVG): Define an exponential moving aver-
age for a fixed window of data starting from
t − J + 1 to t − i:

zi(t) =

t−i
∑

j=t−J+1

at−i−jx(j)/D (4)

where a is the decay factor (it should be in
the range from 0 to 1) and D is the factor
that makes all weights sum to 1. For this
group of inputs, we considered: the follow-
ing: x(t), z1(t), zh(t), z2h(t), Also here J
denotes the overall lag window. Beyond that
we do not take any more time series values.

Again, we added the most recent time series
value x(t) to avoid the delay issue.

For only forecast horizons from 1 to 11 we add
an additional input to each of the above input
combinations. That input is x(t +h− 12), which
represents the time series value 12 months before
the time of the data point to be forecasted. This
helps to account for whatever seasonality might
exist. Even though we perform a deseasonaliza-
tion step, this input is helpful as some time se-
ries have a weak seasonality component that that
they did not pass the seasonality test. Also, the
process of deseasonalization is far from perfectly
accomplished and some seasonal trace is usually
present.

4 Other Preprocessing

Upon quick inspection of the time series, we have
found that many of them possess seasonality.
We have therefore performed a deseasonalization
step for those time series that pass the seasonal-
ity test. In addition, to get the time series to be
in a suitable level and range we have applied a
log transformation and scaled the data. In sum-
mary, we perform the following transformation,
in the following order:

1. Log transformation

2. Deseasonalization

3. Scaling

For the log transformation, we simply take
the log of the time series. Concerning desea-
sonalization, a seasonality test is performed first
to determine whether the time series contains
a seasonal component or not. The test is by
taking the autocorrelation with lag 12 months,
to test the hypothesis “no seasonality” with us-
ing Bartlett’s formula for the confidence interval
(Box and Jenkins [3]). If the test indicates the
presence of seasonality, then we use the classical
additive decomposition approach [4]. In this ap-
proach a centered moving average is performed,
then a month-by-month average is computed on
the smoothed series. This average will then be

3

the seasonal average. We subtract that from the
original series to create the deseasonalized series.
The scaling step is essential to get the time se-
ries in a suitable range, especially for MLP where
scaling is necessary. We have used linear scaling
computed using the training set, to scale the time
series to be between -1, and 1.

After these transformations are performed
we extract the input variables (LAGGED-VAL,
EXP-MOV-AVG, or MOV-AVG) from the trans-
formed time series. Then the forecasting model
is applied. Once we perform the forecasting, we
unwind all these transformations of course in re-
verse order.

5 The Overall Set-Up

First we check the length of the time series. If
it is ≥ 60 data points then we use the following
design.

We have developed a separate prediction model
for each of the 18 forecast horizons. The pre-
diction model uses for most of the horizons two
different input preprocessing methods (one sep-
arate prediction model for each of the two in-
put preprocessing methods). The forecasts of the
two prediction models are combined using sim-
ple averaging. This is repeated for MLP as well
as GP, leading to the “MLP forecast” and the
“GP forecast”. Furthermore, the MLP forecast
and the GP forecast are combined using simple
averaging, leading to the “Combined forecast”.
Based on a combination of a validation set per-
formance and the training set performance (both
equally weighted) for the considered time series,
we choose the final model from among the three
candidates: the MLP forecast, the GP forecast,
and the combined forecast. (We have withheld
18 points for each time series for validation, but
once the validation error is computed the model
is retrained using all data of the considered time
series.) The winning candidate is the one that we
used to obtain the final forecast for the 18 out-of-
sample points. The input preprocessing methods
used are as follows:

1. For one-step ahead, we use only LAGGED-
VAL preprocessing. Using K-fold validation

we choose the best number of lags (up to 6)
to take.

2. For forecast horizons from 2 to 7 we
use LAGGED-VAL preprocessing and EXP-
MOV-AVG preprocessing, with the overall
lag window (J as defined in Section 3) equal
to 12.

3. For forecast horizons from 8 to 18 we use
MOV-AVG preprocessing and EXP-MOV-
AVG preprocessing, with the overall lag win-
dow J equal to 24.

If the time series is too short (< 60 data
points), then there is no point to apply the ma-
chine learning methods as even the most concise
model will lead to some kind of overfitting. In
such a case we use a simple linear regression. This
applies to the time series numbers 1 to 50 (let us
call them Group 1, while the longer time series,
numbered 51 to 111, is Group 2). We also did
not implement the described preprocessing steps
such as deseasonalization, because the seasonal-
ity issue is taken into account by the choice of the
inputs (see below). Also, by inspection we found
that the seasonality for this group is weak if at
all there is. The inputs to the linear regression
are the following:

1. The most recent time series value x(t).

2. The moving average of the time series over a
window from t−L+1 to t, where L depends
on the forecast horizon and varies from 9 to
15.

3. For only forecast horizons from 1 to 11 we
use a third input, and that is x(t + h − 12)
which represents the time series value 12
months before the time of the data point
to be forecasted. This helps to account for
whatever seasonality might exist.

6 Validation results

We withheld from the training set 5 points for
Group 1 and 18 points for Group 2 for the pur-
pose of validating the performance of the meth-
ods. We used as error measure the symmetric

4

mean absolute percentage error, defined as

SMAPE =
1

M

M
∑

m=1

|ŷm − ym|

(|ŷm| + |ym|)/2
(5)

where ym is the target output and ŷm is the pre-
diction. Since it is a relative error measure it
is possible to combine the errors for the differ-
ent time series into one number. The validation
SMAPE for Group 1 turned out to be 16.11%
while the validation SMAPE for Group 2 turned
out to be 15.66%.

Acknowledgement

We would like to acknowledge the help of Athana-
sius Youhanna of Cairo University, who has de-
veloped the seasonality test and the trend test
for this work. We also would like to acknowledge
the useful discussions with Professor Ali Hadi of
the American University of Cairo and Cornell
University. This work is part of the Data Min-

ing for Improving Tourism Revenue in Egypt re-
search project within the Egyptian Data Mining
and Computer Modeling Center of Excellence.

References

[1] N. K. Ahmed, A. Atiya, N. El Gayar, and
H. El-Shishiny, An empirical comparison

of machine learning models for time series

forecasting, Accepted in the Special Issue
on The Link Between Statistical Learning

Theory and Econometrics: Applications in

Economics, Finance, and Marketing, Econo-
metric Reviews, to appear on 2009.

[2] S.D. Balkin and J.K. Ord, Automatic neural

network modeling for univariate timeseries,
International Journal of Forecasting, 16(4),
509-15, 2000.

[3] G. Box and G. Jenkins, Time Series Anal-

ysis, Forecasting and Control, Holden-Day
Inc., 1976.

[4] S. Makridakis, S. C. Wheelwright, and R. J.
Hyndman, Forecasting: Methods & Applica-

tions, 3rd Eddition, Ch. 3, Wiley, 1998.

[5] C. E. Rasmussen, and C. K. L. Williams,
Gaussian Processes for Machine Learning,
MIT Press, 2006.

5

