
 
 

 

  

Abstract—This paper presents a methodology to select input 
variables for time series prediction. A main motivation is to 
find some proper input variables which describe the time series 
dynamics properly. It is shown that even when the choice of 
input variables is confined to the lagged values of the process to 
be predicted, a nonlinear analysis of the most significant 
factors is crucial for improving the prediction quality. The 
proposed method is used to select the appropriate input 
variables for neuro fuzzy models utilized for time series 
prediction benchmark in NN3 competition as well as a second 
benchmark to show the generality of the claims. Results depict 
the effectiveness of the proposed method in proper input 
selection for neuro fuzzy models for prediction task. 

I. INTRODUCTION 
REDICTING the future, which has been the goal of 
many research activities in the last century, is an 

important problem for human to prevent or to reduce loss of 
time and property, arising from the fear of unknown 
phenomena and calamities all around the infinitely large 
world with its many variables showing highly nonlinear and 
chaotic behavior [1], [2]. Time series is a collection of 
measurements or observations from processes and 
phenomena that made sequentially in time [2]. Purposes of 
time series analysis can be defined as identifying the nature 
of corresponding processes and forecasting their future 
values.  

Input variables selection is one of the most important 
problems in modeling and prediction tasks. The objective is 
to find a subset of inputs from original input data set [3]. By 
proper input variables selection which yields faster and more 
cost-effective input variables with more generalization 
capability, a better perception of the system is provided [4]. 
The selected inputs with minimum redundancy have 
maximum relevance with the output variables [5].  

In this paper, a methodology based on Mutual 
Information for input variables selection is introduced to 
improve the performance of prediction tasks even when 
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lagged values of the time series are the only possible input 
signals. The method can be used to eliminate less useful 
lags, thereby reducing the number of parameters and 
improving generalization performance. After selecting 
proper input variables the Locally Linear Neuro Fuzzy 
(LLNF) model as general function approximator [6] can be 
used as a general framework to predict the main patterns of 
the time series due its great performance in prediction of 
nonlinear and chaotic time series [7], [8].  

The paper consists of five sections. The problem of input 
variables selection and mutual information criterion along 
with the appropriate algorithm for choosing input variables 
is presented in Section II. Section III presents the main 
aspects of the locally linear neuro fuzzy model. Prediction of 
two case studies has been considered in Section IV. The first 
case study has been chosen from neural forecasting 
competition (NN3) and the second case study is the sunspot 
number as a natural chaotic time series which has been 
considered as a difficult real world case study. The last 
section contains the concluding remarks. 

II. INPUT VARIABLES SELECTION METHODOLOGY 
Building models with many irrelevant or unnecessary 

inputs may cause model works imperfectly. Generally, if the 
number of free parameters is small, complexity of the model 
is not enough to capture the dynamics of the real system and 
prediction will not be very accurate. Conversely, selecting 
too many free parameters will force model to capture also 
the noise contained in the data [9] which is also known as 
over-fitting phenomenon [6], [10]-[12]. The over-fitting 
problem results from model complexity. Handling this 
problem becomes more difficult when there are many input 
variables [13]. Therefore, choosing a set of most relevant 
and non-redundant input variables is necessary to build an 
appropriate model with high performance, and to improve 
the interpretability of the selected set of inputs [14].  

The problem can be defined as considering a set of 
candidate input variables and selecting a subset that has the 
best performance (according to the predefined criteria) in a 
prediction model. Let Xi, 1≤ i ≤ Nl (Nl is the number of lags) 
be lags of the time series as input variables. The objective is 
to find an optimal subset of Xi containing d variables (d ≤ 
Nl) that will be used to build an adequate model [15]. Some 
heuristic search strategies are needed to choose a set of 
suboptimal input variables. Strategies which are common in 
selecting regressors for linear models are Forward Selection, 
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Backward Elimination and Stepwise Regression [6], [16]. 
The same strategies can be applied to select inputs for 
nonlinear models. Two criteria are needed to choose a 
suitable subset of inputs [16]: 
1. Saliency criterion: to direct the search by ranking input 

variables according to their relevance to the output.  
2. Selection criterion: to evaluate the relevance for a 

subset of input variables.  
In order to reduce the computational complexity in the 

estimation and selection procedure, model-independent 
approaches are needed [16]. Two simple methods are 
Correlation- and Partial Correlation Analysis, but these 
approaches show poorly when relations are nonlinear. Two 
other approaches are Gamma Test and mutual information 
[17]-[19]. Mutual information is very effective in evaluating 
the relevance or redundancy of each input variable, where 
methods based on linear relations (like the correlation 
analysis) may give misleading information [20]. In this 
paper, mutual information is used to select subset of lags of 
the time series to predict its future. 

A. Mutual information: theoretical foundation 
In Probability Theory, especially in Information Theory 

the mutual information can be used for evaluating any 
arbitrary dependencies between random variables [19], [21]. 
In fact, the mutual information between two random 
variables X and Y, is a quantity that measures the knowledge 
on Y provided by X (or conversely the amount of knowledge 
on X shared by Y). If X and Y are independent, therefore X 
contains no information about Y and vice versa; thus the 
mutual information between them is zero. 

The definition of mutual information originates from the 
Shannon Entropy [22] in the information theory. The mutual 
information of two random variables X and Y is defined as: 
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where H(.) is the entropy, H(X│Y), H(Y│X) are the 
conditional entropies, and  H(X;Y) is the joint entropy of X 
and Y  that are defined by: 
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where pX,Y(x,y), pX(x) and pY(y) are the joint probability 
density function and marginal density functions of X and Y, 
respectively. The marginal density functions are given by: 
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Mutual information is the Kullback-Leibler distance 

between the joint distribution pX,Y(x,y) and the product 
distribution pX(x).pY(y). By substituting (2), (3), (4) into (1) 
one has the mutual information equation: 
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In discrete forms, the integrations are replaced by 

summation over all possible values that appear in the data. 
In order to estimate the mutual information between X and Y 
we only need to estimate pX,Y(x,y) by (5), (6) and (7). 
Histogram and Kernel methods are widespread to estimate 
probability density functions [23]. To overcome the curse of 
dimensionality in these estimation methods and to reduce the 
computational complexity, we use a recent estimator that 
estimates entropy from the average distance to the k-nearest 
neighbors, averaged over all data [19], [24]. Consider a set 
of N input-output pairs, z i =(x i ,y i) ,  i=1,…,N , which are 
assumed to be realizations of a random variable Z=(X ,Y )  
with density , ( , )X Yp x y . Either X and Y have values in R  or 

in pR  and the algorithm will use the natural norm 
(Euclidean norm) in those spaces. Input–output pairs are 
compared through the maximum norm [24]: 
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It can be considered that k is a fixed positive integer, then 

z k ( i )=(x k ( i ) ,y k ( i ) )  is the k-th nearest neighbor of z i  (with 
maximum norm). It can be denoted that: 
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2iε  is the distance from iz  to its k-th neighbor and 

2x
iε  and 2y

iε  are the distances between the same points 
projected into X and Y subspaces. Obviously, 
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mutual information is then: 
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where ψ is the Digamma function. With a small value for k, 
this estimator has a large variance and a small bias, whereas 
a large value of k leads to a small variance and a large bias 
[25]. In this paper, k = 6 is used. 

B. Input variables selection algorithm 
This section is devoted to describe the input variables 

selection algorithm. This algorithm has been used 
beforehand for feature selection in classification and pattern 
recognition problems [18], [20], and [26] which is proposed 
by Battiti in 1994. The objective of this algorithm is to 
maximize relevance between inputs and output and 
minimizes the redundancy of selected inputs. This algorithm 
computes I(T;l) and I(l;l′), where l  and l′  are individual 
inputs and T is output. The goal of these two terms is to 
select relevant input with the output which has least 
dependency with other selected inputs [26]. The algorithm is 
as follows: 

 
1) Initialization: Set L to ‘initial set of n inputs’; S to 

‘empty set’; and T to ‘output’. 
2) Computation of the mutual information with the output: 

For each input l L∈  compute  I(T;l). 
3) Choice of the first input: Find the input l that maximizes 

I(T;l); Set { }L L l← −  , { }S l← . 
4) Greedy selection: Repeat until desired number of input 

variables are selected: 
a) Computation of the mutual information between 

variables: For all couples of variables (l, S) with  
l L∈ , s S∈ ; compute I(l; s), if it is not already 
available. 

b) Selection of the next input: Chose the input l L∈  

as the one that maximizes ( ) ( ); ;
s S

I T l I l s
S

β

∈
− ∑ ; 

set { }L L l← − , { }S S l← ∪ . 
5) Output the set S containing the selected inputs. 

 
To consider redundancy between input variables, Battiti 

imports β as a parameter to adjust the relative importance of 
mutual information between the candidate input and the 
already selected inputs with respect to the mutual 
information with the output. If β= 0  the algorithm only 
attempts to maximize mutual information with output, so the 
redundancy between input variables is never considered. If  
β increases, the total mutual information between already 
selected inputs influences the selection procedure much and 
the redundancy is then reduced [18], [26]. 

III. NEURO FUZZY MODELING 
The proposed method, mutual information based input 

selection, is classified as a model-independent approach. We 
use LLNF model in this paper due to good performance of 
this method in previous works. The fundamental approach 
with the LLNF model is dividing the input space into small 
linear subspaces with fuzzy validity functions. Any 
produced linear part with its validity function can be 
described as a fuzzy neuron. Thus the total model is a neuro 
fuzzy network with one hidden layer, and a linear neuron in 
the output layer which simply calculates the weighted sum 
of the outputs of locally linear neurons: 
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where 1 2
T

pu u u= ⎡ ⎤⎣ ⎦"u  is the model input, M is 

the number of locally linear neurons, and ijω denotes the 

linear estimation parameters of the i-th neuron. The validity 
functions are chosen as normalized Gaussians: 
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The Mp parameters of the nonlinear hidden layer are the 

parameters of Gaussian validity functions: center (cij) and 
standard deviation ( ijσ ). Optimization or learning methods 

are used to adjust the two sets of parameters, the rule 
consequent parameters of the locally linear models ( ijω s) 

and the rule premise parameters of validity functions (cijs 
and ijσ s). Global optimization of linear consequent 

parameters is simply obtained by least squares technique. 
The global parameter vector contains M(p+1) elements: 
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and the associated regression matrix X for N measured data 
samples is: 
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Therefore, 
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The structure of LLNF is shown in Fig. 1. The remarkable 

properties of locally linear neuro fuzzy model, its 
transparency and intuitive construction, lead to the use of 
least squares technique for rule antecedent parameters and 
incremental learning procedures for rule consequent 
parameters. In this paper, Locally Linear Model Tree 
(LoLiMoT) algorithm as an incremental tree-based 
algorithm is used to tune the rule premise parameters, i.e. 
determining the validation hypercube for each locally linear 
model [6], [7]. In each iteration, the worst performing 
locally linear neuron is determined to be divided. All the 
possible divisions in the p dimensional input space are 
checked and the best is performed. The fuzzy validity 
functions for the new structure are updated; their centers are 
the centers of the new hyper-cubes, and the standard 
deviations are usually set as 0.7. For more detail refer to [6]. 

 

IV. CASE STUDIES 

A. Prediction of 3rd times series of NN3 forecasting 
competition 
In this case study, it is tried to predict one of the NN3 

forecasting competitions’ time series (the 3rd time series 
from reduced data set) via proposed method. This time 
series could be downloaded from [27]. This time series 
includes 125 data. It is obvious that with this number of data 
it is difficult to train a LLNF model. Therefore in this paper 
bootstrap technique [28] is used to create a data set with 
some more samples which will be used to train the LLNF 
model. 

First of all it needs to select proper input variables for 
LLNF model. The proposed input variables selection 
algorithm is applied to indicate the best input variables for 

prediction of this time series. 20 lags of the time series are 
considered as potential inputs. Table 1 shows the results of 
the proposed method compare to other methods such as 
correlation analysis, gamma test.  

 

 
According to the Table 1, the first five input variables are 

selected to create a five dimensional input vector. After 
creating the training and test data set, the LoLiMoT 
algorithm is applied to tune the parameters of the LLNF 
model. In this paper, Normalized Mean Square Error 
(NMSE) is used as error index with following definition: 
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ˆ,  y y  and y are observed data, predicted data and average 

of observed data respectively. Note that just an average 
estimation of data gives a NMSE of 1. Using proposed 
method, the NMSE error for test data starts to increase after 
4 iterations. Therefore, the optimal number of neurons is 
chosen to be four. Fig. 2 and Fig. 3 show the performance of 
the LLNF algorithm for training and test data set. It can be 
seen that the performance of the LLNF model with the 
proposed input variables selection algorithm is superior on 
test data set. Table 2 presents a comparison between this 
method and the predictions made by other methods. It is 
clear that proposed method, with a fewer number of 
neurons, achieves to a better generalization performance. 

 
Fig. 1.  Structure of locally linear neuro fuzzy model. 

TABLE I 
ORDER OF INPUT VARIABLES SELECTION ACCORDING TO THE APPLIED 

ALGORITHM 

Input 
variables 

Proposed 
algorithm 

Correlation 
analysis 

Gamma  
test 

x(t-1) 1 2 1 
x(t-2) 3 16 4 
x(t-3) 8 18 9 
x(t-4) 13 13 6 
x(t-5) 16 8 3 
x(t-6) 20 7 13 
x(t-7) 18 9 11 
x(t-8) 14 12 17 
x(t-9) 9 17 16 
x(t-10) 4 20 20 
x(t-11) 2 4 19 
x(t-12) 5 1 18 
x(t-13) 6 3 2 
x(t-14) 7 19 8 
x(t-15) 11 15 10 
x(t-16) 15 11 15 
x(t-17) 17 6 14 
x(t-18) 19 5 7 
x(t-19) 12 10 5 
x(t-20) 10 14 12 



 
 

 

 

 

 
B. Solar activity forecasting 
A second benchmark, prediction of sunspot numbers, will 

also demonstrate that good non-parametric nonlinear 
prediction methodologies are not the only important factors 
in achieving good results and good nonlinear input selection 
techniques are at least as important. The sunspot number is a 
good measure of solar activity and is computed according to 
the Wolf formulation: 

 
R=k (10g+s) (21)

 
Where g is the number of sunspot groups, s is the total 
number of spots in all groups and k is a variable scaling 
factor which is related to the conditions of observation. The 
monthly and yearly averaged number of sunspots is 
accessible through several web sites from the sunspot Index 

Data Center in Belgium or US National Oceanic and 
Atmospheric Administration. To compare with the previous 
results the yearly sunspot number has been used in this 
paper, however the proposed method is capable of 
predicting the monthly values as well. The first 231 years, 
from 1700 to 1930, is used as training set and remaining 
data is used as test set. The proposed input variables 
selection algorithm is applied to indicate the best input 
variables for prediction of this time series. 15 lags of the 
time series are considered as potential inputs. Table 3 shows 
the results of the three input variables selection methods. 

 

 
The NMSE error for test data starts to increase after 3 

iterations. Fig. 4 and Fig. 5 show the performance of LLNF 
algorithm for training and test data set. It can be seen that 
the performance of the LLNF model with the proposed input 
variables selection algorithm with mutual information 
algorithm is acceptable according to the other well known 
methods in this domain. Table 4 presents a comparison 
between this method and the predictions made by other 
methods. 
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Fig. 3.  3rd time series of NN3 competition and its prediction with 
LLNF via different types of input variables selection algorithms for 
test set. 

TABLE II 
NMSE ERROR IN NN3 TIME SERIES PREDICTION VIA DIFFERENT INPUT 

VARIABLES SELECTION ALGORITHMS 
Input variables 

selection algorithm 
Number of 
Neurons 

NMSE error 
‘Train set’ 

NMSE error  
‘Test set’ 

5 Most recent values 7 0.3053 0.3064 
Correlation analysis 6 0.0105 0.2067 

Gamma test 6 0.1995 0.2129 
Proposed algorithm 4 0.0916 0.1151 
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Fig. 2.  Upper: 3rd time series of reduced data set from NN3 
competition and its prediction with LLNF and proposed input 
variables selection algorithm for training set; Lower: Prediction 
error for training set. 

TABLE III 
ORDER OF INPUT VARIABLES SELECTION ACCORDING TO THE APPLIED 

ALGORITHM 

Input 
variables 

Proposed 
algorithm 

Correlation 
analysis 

Gamma test 

x(t-1) 1 1 1 
x(t-2) 5 7 2 
x(t-3) 14 15 3 
x(t-4) 12 10 9 
x(t-5) 3 6 5 
x(t-6) 6 8 13 
x(t-7) 8 12 12 
x(t-8) 11 11 15 
x(t-9) 7 4 14 
x(t-10) 4 2 4 
x(t-11) 2 3 7 
x(t-12) 9 5 6 
x(t-13) 15 13 8 
x(t-14) 13 14 10 
x(t-15) 10 9 11 
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Fig. 4.  Upper: Sunspot number and its prediction with LLNF 
and proposed input variables selection algorithm for training set; 
Lower: Prediction error for training set. 



 
 

 

 
 

 

V. CONCLUSION 
In this paper, information theoretic criterion is used to 

select a subset of input variables which have the richest 
information about the output to have a reliable prediction. 
The proposed algorithm is applied to select proper input 
variables for well known LLNF model to predict some time 
series and its results is compared with common input 
selection methods. Simulation results clarify the ability of 
mutual information to find the best subset of inputs, where 
relations are nonlinear and linear analysis fails to have 
satisfactory results. Although the concept of information 
theoretical approach to input selection has been discussed in 
several classification tasks, its importance in black box 
approach to nonlinear time series prediction is still not 
generally acknowledged. It can be argued that as more 
efficient nonlinear prediction techniques are progressively 
being developed, the importance of good nonlinear input 
selection routines is going to increase in future.  
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TABLE IV 
NMSE ERROR IN SSN PREDICTION VIA DIFFERENT INPUT VARIABLES 

SELECTION ALGORITHM 
Input variables 

selection algorithm 
Number of 
Neurons 

NMSE error 
‘Train set’ 

NMSE error 
‘Test set’ 

5 Most recent values 6 0.1095 0.1196 
Correlation analysis 8 0.1420 0.2200 

Gamma test 6 0.0981 0.1083 
Proposed algorithm 3 0.1136 0.1159 
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Fig. 5.  Sunspot number and its prediction with LLNF via 
different types of input variables selection algorithm for test 


