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Abstract— In this paper, time series prediction is considered
as a problem of missing values. A method for the determination
of the missing time series values is presented. The method
is based on two projection methods: a nonlinear one (Self-
Organized Maps) and a linear one (Empirical Orthogonal
Functions). The presented global methodology combines the
advantages of both methods to get accurate candidates for the
prediction values. The methods are applied to two time series
competition datasets.

I. I NTRODUCTION

The presence of missing values in the underlying time
series is a recurrent problem when dealing with databases. A
number of methods have been developed to solve the problem
and fill the missing values. The methods can be classified into
two distinct categories: deterministic methods and stochastic
methods.

Self-Organizing Maps [1] (SOM) aim to ideally group
homogeneous individuals, highlighting the neighborhood
structure between classes in a chosen lattice. The SOM
algorithm is based on an unsupervised learning principle,
where the training is entirely stochastic, data-driven. No
information about the input data is required. Recent ap-
proaches propose to take advantage of the homogeneity of
the underlying classes for the data completion purposes [2].
Furthermore, the SOM algorithm allows the projection of a
high-dimensional data to a low-dimensional grid. Through
this projection and focusing on its property of topology
preservation, the SOM allows a nonlinear interpolation for
the missing values.

Empirical Orthogonal Function (EOF) [3] models are
deterministic enabling a linear projection without the loss in
the data dimensionality. They have also been used to develop
models for finding missing data [4]. Moreover, EOF models
allow a continuous interpolation of the missing values, but
are sensitive to the initialization.

This paper describes a new methodology, which combines
the advantages of both the SOM and the EOF. The nonlinear
interpolation property of the SOM is used as an accurate
initialization tool and then the continuity property of theEOF
method is used to recover missing data efficiently.

The SOM is presented in the Section III, the EOF in Sec-
tion IV and the global methodology SOM+EOF in Section
V. Section VI presents the experimental results using two
competition datasets; The ESTSP2007 [5] and the NN3 [6]
competition benchmarks.
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II. T IME SERIESPREDICTION

A. Data with Missing Values

In the time series prediction problem, the samples are
generated by sliding a fixed window over the time series
and taking each window full of values as a sample. The size
of the window and thus the length of the samples isT . All
samples are collected to aregressor matrix

X =











x1

x2

...
xj











, j = 1, 2, ..., N, (1)

where N is the number of samples and eachxj is a T -
dimensional sample vector.

When predicting the future of the time series, the missing
values are added to the end of the known values of the time
series. Then, logically the regressor matrix is missing some
values in the lower right corner. The shape and the size of
the area of the missing values depends on the used method
and the horizon of prediction.

B. Prediction Strategy

There are three prediction strategies for the long-term
prediction of time series that are mainly used. The first and
the least calculation intensive is theRecursive prediction
strategy, where the model selected in the learning phase for
the first time step is used repeatedly, or recursively, as far
as necessary. The predicted values are used as known values
and the prediction is done always only one step at a time.

The next alternative is to use a different model to predict
each time step. ThisDirect prediction strategy needs a
different model for each time step and is therefore many
times more calculation intensive. In many cases the Direct is
still an appealing choice, because of the increased accuracy
compared to the Recursive strategy. Whereas the Recursive
strategy suffers from the accumulation of the prediction
errors, the Direct does not.

Third alternative is to use a mix of the two, called
DirRec prediction strategy [7]. With this prediction strategy a
different model is trained for each time step and all predicted
values are used as a known values in the process. It means
that the regressor is increased by one in every time step, when
the previous prediction is included in the learning data. This
increases the calculation time in the learning process but in
many cases, the accuracy is also better.

In this case, when the time series prediction is considered
as a missing value problem, the whole set of values to be



predicted is estimated at once. Strictly speaking the strategy
used here is none of the above, but instead anall-at-once
strategy.

III. SELF-ORGANIZING MAP

The SOM algorithm is based on an unsupervised learning
principle, where training is entirely data-driven and no infor-
mation about the input data is required [1]. Here we use a 2-
dimensional network, composed ofc units (or code vectors)
shaped as a squarelattice. Each unit of a network has as
many weights as the lengthT of the learning data samples,
xn, n = 1, 2, ..., N . All units of a network can be collected to
a weight matrixm (t) = [m1 (t) ,m2 (t) , ...,mc (t)] where
mi (t) is the T -dimensional weight vector of the uniti at
time t and t represents the steps of the learning process.
Each unit is connected to its neighboring units through a
neighborhood functionλ(mi,mj , t), which defines the shape
and the size of the neighborhood at timet. The neighborhood
can be constant through the entire learning process or it can
change in the course of learning.

The learning starts by initializing the network node
weights randomly. Then, for a randomly selected sample
xt+1, we calculate the Best Matching Unit (BMU), which
is the neuron whose weights are closest to the sample. The
BMU calculation is defined as

mBMU(xt+1) = arg min
mi,i∈I

{‖xt+1 − mi (t)‖} , (2)

whereI = [1, 2, ..., c] is the set of network node indices, the
BMU denotes the index of the best matching node and‖.‖
is a standard Euclidean norm.

If the randomly selected sample includes missing values,
the BMU cannot be solved outright. Instead, an adapted SOM
algorithm, proposed by Cottrell and Letrémy [8], is used. The
randomly drawn samplext+1 having missing value(s) is split
into two subsetsxT

t+1 = NMxt+1
∪ Mxt+1

, whereNMxt+1

is the subset where the values ofxt+1 are not missing and
Mxt+1

is the subset, where the values ofxt+1 are missing.
We define a norm on the subsetNMxt+1

as

‖xt+1 − mi (t)‖NMxt+1

=
∑

k∈NMxt+1

(xt+1,k − mi,k(t))
2
,

(3)
where xt+1,k for k = [1, ..., T ] denotes thekth value of
the chosen vector andmi,k(t) for k = [1, ..., T ] and for
i = [1, ..., c] is thekth value of theith code vector.

Then the BMU is calculated with

mBMU(xt+1) = arg min
mi,i∈I

{

‖xt+1 − mi (t)‖NMxt+1

}

.

(4)
When the BMU is found the network weights are updated

as

mi (t + 1) = . . .

mi (t) − ε(t)λ
(

mBMU(xt+1),mi, t
)

[mi (t) − xt+1] , (5)

∀i ∈ I,

whereε(t) is the adaptation gain parameter, which is]0, 1[-
valued, decreasing gradually with time. The number of
neurons taken into account during the weight update depends
on the neighborhood functionλ(mi,mj , t). The number of
neurons, which need the weight update, usually decreases
with time.

After the weight update the next sample is randomly drawn
from the data matrix and the procedure is started again by
finding the BMU of the sample. The learning procedure is
stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some
clusters containing our data. Cottrell and Letrémy proposed
to fill the missing values of the dataset by the coordinates of
the code vectors of each BMU as natural first candidates for
the missing value completion:

π(Mx) (x) = π(Mx)

(

mBMU(x)

)

, (6)

whereπ(Mx) (.) replaces the missing valuesMx of sample
x with the corresponding values of the BMU of the sample.
The replacement is done for every data sample and then the
SOM has finished filling the missing values in the data.

The procedure is summarized in Table I. There is a toolbox
available for performing the SOM algorithm in [9].

TABLE I

SUMMARY OF THE SOM ALGORITHM FOR FINDING THE MISSING

VALUES.

1) SOM node weights are initialized randomly
2) SOM learning process begins

a) Inputx is drawn from the learning data setX

i) If x does not contain missing values, BMU is found
according to Equation 2

ii) If x contains missing values, BMU is found according
to Equation 4

b) Neuron weights are updated according to Equation 6
3) Once the learning process is done, for each observation containing

missing values, the weights of the BMU of the observation are
substituted for the missing values

IV. EMPIRICAL ORTHOGONAL FUNCTIONS

This section presents a method called Empirical Orthog-
onal Functions (EOF) [3]. In this paper, the EOF are used
as a denoising tool and for finding the missing values at the
same time [4].

The EOF are calculated using a well-known Singular Value
Decomposition (SVD)

X = UDV
∗ =

K
∑

k=1

ρkukvk, (7)



whereX is a 2-dimensional data matrix,U and V are the
collections of singular vectorsu and v in each dimension
respectively,D is a diagonal matrix with the singular values
ρ in its diagonal andK is the smaller dimension ofX (or
the number of nonzero singular values ifX is not full rank).
The singular values and the respective vectors are sorted to
a decreasing order.

When the EOF are used to denoise the data, not all
singular values and vectors are used to reconstruct the data
matrix. Instead, it is assumed that the vectors corresponding
to larger singular values contain more data with respect to
the noise than the ones corresponding to smaller values [3].
Therefore, it is logical to selectq largest singular values and
the corresponding vectors and reconstruct the denoised data
matrix using only them.

In the case whereq < K, the reconstructed data matrix is
obviously not the same than the original one. The largerq

is selected, the more original data, which also includes more
noise, is preserved. The optimalq is selected using validation
methods, for example [10].

The EOF (or the SVD) cannot be directly used with
databases including missing values. The missing values must
be replaced by some initial values in order to use the EOF.
This replacement can be for example the mean value of the
whole data matrixX or the mean in one direction, row wise
or column wise. The latter approach is more logical when
the data matrix has some temporal or spatial structure in its
columns or rows.

After the initial value replacement the EOF process begins
by performing the SVD and the selectedq singular values
and vectors are used to build the reconstruction. In order not
to loseany information, only the missing values ofX are
replaced with the values from the reconstruction. After the
replacement, the new data matrix is again broken down to
singular values and vectors with the SVD and reconstructed
again. The procedure is repeated until a convergence criterion
is fulfilled.

The procedure is summarized in Table II.

TABLE II

SUMMARY OF THE EOF METHOD FOR FINDING MISSING VALUES.

1) Initial values are substituted into missing values of the original
data matrixX

2) For eachq from 1 to K

a) SVD algorithm calculatesq singular values and eigenvectors
b) A number of values and vectors are used to make the

reconstruction
c) The missing values from the original data are filled with the

values from the reconstruction
d) If the convergence criterion is fulfilled, the validationerror

is calculated and saved and the nextq value is taken under
inspection. If not, then we continue from step a) with the
sameq value

3) The q with the smallest validation error is selected and used to
reconstruct the final filling of the missing values inX

V. GLOBAL METHODOLOGY

The two methodologies presented in the previous two sec-
tions are combined and the global methodology is presented.
The SOM algorithm for missing values is first ran through
performing a nonlinear projection for finding the missing
values. Then, the result of the SOM estimation is used as
initialization for the EOF method. The global methodology
is summarized in Figure 1.

Dataset with
Missing
Values

-

SOM
Nonlinear,
discrete,

low-dimensional
projection

Completed
Data Sample

�

EOF
Linear,

continuous,
high-dimensional

projection

?

Fig. 1. Global methodology summarized.

For the SOM we must select the optimal grid sizec and for
the EOF the optimal number of singular values and vectors
q to be used. This is done using validation, using the same
validation set for all combinations of the parametersc and
q. Finally, the combination of SOM and EOF that gives the
smallest validation error is used to perform the final filling
of the data.

While both the SOM and the EOF are able to fill the
missing values alone, the experimental results demonstrate
that together the accuracy is better. The fact that these two
algorithms suit well together is not surprising. Two perspec-
tives can be considered to understand the complementarity
of the algorithms.

Firstly, the SOM algorithm allows nonlinear projection. In
this sense, even for a dataset with a complex and nonlinear
structure, the SOM code vectors will succeed to capture
the nonlinear characteristics of the inputs. However, the
projection is done on a low-dimensional grid (in our case
two-dimensional) with the possibility of losing the intrinsic
information of the data.

The EOF method is based on a linear transformation using
the Singular Value Decomposition. Because of the linearity
of the EOF approach, it will fail to reflect the nonlinear
structures of the dataset, but the projection space can be
as high as the dimension of the input data and remain
continuous.

There is a toolbox for performing the SOM+EOF in [11].

VI. EXPERIMENTAL RESULTS

This paper presents an application of the SOM+EOF
method to two time series prediction benchmarks; The
ESTSP2007 competition dataset and the NN3 competition.



A. ESTSP2007 competition

This time series prediction benchmark includes a total of
875 values from an unknown origin. The dataset is shown
in Figure 2. More information and the dataset can be found
from the ESTSP2007 conference website [5].
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Fig. 2. ESTSP 2007 Competition dataset.

For the model selection purposes the dataset is divided into
two sets, learning and validation set. The learning set consists
of 465 first values and the rest belongs to the validation set.
The optimal regressor size is set to 11 after many trial and
error experiments.

The optimal SOM size is selected using a simple validation
procedure, where the SOM learning is performed using only
the learning set and the validation set is used to tune the SOM
size for one step ahead prediction. The validation errors are
shown in Figure 3.
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Fig. 3. Validation errors with respect to the SOM grid size.

From Figure 3 the optimal SOM size is selected to 13×13
with validation error of 0,297. There is only very small
difference in the validation error with larger SOM sizes.

The only parameter of the EOF method is tuned using the
same learning and validation sets than with the SOM to get
comparable results. Also the regressor size is kept the same
than with the SOM and the optimization is done for one step
ahead prediction. The validation errors are shown in Figure
4.

From Figure 4 the optimal number of EOF is selected to 2
with validation error of 0,451. The result suggests relatively
strong noise influence in the singular values after the third
one, where the validation error is increasing rapidly.

For the SOM+EOF method the two separate methods
are combined and the validation is performed for each

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

Number of EOF

V
al

id
at

io
n 

M
S

E

Fig. 4. Validation errors with respect to the number of EOF.
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Fig. 5. Minimum validation errors with respect to the SOM sizeusing the
SOM+EOF method.
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Fig. 6. Validation errors with respect to the number of EOF using SOM
size 15×15.

combination of the SOM size and the number of EOF. The
validation errors are shown in Figure 5 and 6.

From Figure 5 the optimal SOM is selected to be 15×15
and from Figure 6 the optimal number of EOF to 4 with the
validation error of 0,233.

For one step ahead prediction the regressor size is selected
to 11, but for the 50 steps ahead the regressor size is
increased to 60 in order to fit the missing values to the
regressor.

Our experiments with several other datasets have shown
that the EOF method uses larger number of EOF when the
regressor size is increased. Therefore, the final prediction is
done using the number of EOF fixed to 8. The prediction of
the 50 timesteps is shown in Figure 7.

From the Figure 7 it seems that that the prediction has
removed the noise and is predicting the next peak of the
time series quite well.
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Fig. 7. Prediction of 50 next values of the competition dataset. The real
values are presented by the solid line and the dashed one presents the
prediction.

B. NN3 Competition

The NN3 competition consists of 11 different time series
with variable lengths ranging from 126 values to 115 values.
In this paper, the results with two time series are presented,
namely with the3rd and the 4th time series, shown in
Figures 8 and 9 respectively. For more information about
the competition visit [6].
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Fig. 8. NN3 Competition dataset,3rd time series.
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Fig. 9. NN3 Competition dataset,4th time series.

Because the EOF method was not as good as the SOM
and the SOM+EOF, we use only the two latter ones with the
NN3 competition time series. Also, due to the scale of the
series, the normalized MSE is used in the validation error
graphs. Finally, we use a 10-fold Cross-Validation instead
of a simple validation in order to stabilize the parameter
selection results. Otherwise, the procedure follows the one
described in the previous section.

1) Time Series 3: The results for the3rd time series are
presented in the following. In Figure 10 the 10-fold Cross-
Validation NMSE for the SOM and the SOM+EOF method
are presented. The used regressor size is 15, which is selected
empirically using trial and error.
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Fig. 10. Validation errors of the3rd time series. Solid line represents the
SOM and the dashed one the SOM+EOF.

From Figure 10 the smallest normalized validation error
is 0,27 and it is achieved with the SOM size8 × 8 with
the both methods. In this case, the selected number of EOF
is the maximum 15. The validation NMSE is also the same
than with the SOM.

Figure 11 shows the EOF validation errors using the SOM
grid size8 × 8.
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Fig. 11. EOF validation errors of the3rd time series using SOM grid size
8 × 8.

From Figure 11 we can clearly see, that the second last
singular value contains more noise than any other value. This
must be taken into account when selecting the parameters for
the final prediction.

Because the regressor size must be increased to 33 from
the initial 15 in order to fit the 18 missing values in
the regressor, the number of EOF must also be increased.
Therefore, taking into account the previous findings, the
number of EOF to be used in the final prediction is fixed
to 17.

The final prediction using the SOM+EOF method is shown
in Figure 12.

2) Time Series 4: The results for the4th time series are
presented in the following. In Figure 13 the 10-fold Cross-
Validation errors with the SOM and the SOM+EOF are
presented. The regressor size is set to 13 after several trial
and error experiments.

From Figure 13 the SOM size with the lowest validation
error is 8 × 8 for the SOM method and11 × 11 for the
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Fig. 12. Prediction of the3rd time series. Solid line represents the known
time series and the dashed one the prediction using the SOM+EOF method.

2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

SOM Grid Size

V
al

id
at

io
n 

N
M

S
E

Fig. 13. Validation errors of the4th time series. Solid line represents the
SOM and the dashed one the SOM+EOF.

SOM+EOF. The NMSE for the SOM is 0,21 and for the
SOM+EOF 0,20. The number of EOF for the selected SOM
size is 5.

For the prediction, the regressor size is increased to 31
from the initial 13 in order to fit the 18 missing values in
the regressor.

Similarly than before, the number of EOF must also be
increased. The final number of EOF is fixed to 8. The
prediction of 18 timesteps is shown in Figure 14.
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Fig. 14. Prediction of the4th time series. Solid line represents the known
time series and the dashed one the prediction.

VII. C ONCLUSION

In this paper, we have presented a new methodology
for finding the missing values in a temporal database. The
methodology combines the Self-Organizing Maps (SOM)
and the Empirical Orthogonal Functions (EOF) efficiently
and the global methodology (the SOM+EOF) is used to find
the future values of a time series.

The advantages of the SOM include the ability to per-
form a nonlinear projection of a high-dimensional data to
a smaller dimension with the interpolation between discrete
data points.

For the EOF, the advantages include high-dimensional lin-
ear projection of high-dimensional data without the decrease
of dimensionality and the speed and the simplicity of the
method.

The SOM+EOF includes the advantages of both individual
methods, leading to a new accurate approximation method-
ology for the missing future values of a time series. The
performance obtained in validation show the better accuracy
of the new methodology.

It is also evident that the EOF is greatly dependent on a
good initialization in order to produce accurate results. The
SOM gives a good initialization even though the method
alone is not so accurate. The two methods complete each
other and work well together.

For further work, the modifications and performance
upgrades of the global methodology are investigated and
applied to other types of datasets and time series from other
fields of science, for example climatology and finance.
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