
 
 

 

  

Abstract— In this work a feedforward neural networks-
based nonlinear autoregression (NAR) model for forecasting 
time series is presented. The learning rule used to adjust the 
neural net weights is based on the Levenberg-Marquardt 
method. In function of the long and short stochastic 
dependence of the time series, we propose an on-line heuristic 
law to set the training process and to modify the neural net 
topology. The input patterns for the neural network-based 
model are the values of the time series after applying a time-
delay operator. Hence, the neural-net output will tend to 
approximate the current value available from the series. The 
coefficients of the nonlinear filter are adjusted on-line in the 
learning process, by considering a criterion that modifies at 
each time-stage the number of patterns, the number of 
iterations, and the length of the tapped-delay line, in function 
of the Hurst’s value (H) calculated for the time series. 
According to the stochastic behavior of each series, H can be 
greater or smaller than 0.5, which means that each series tends 
to present long or short term dependence, respectively. The 
algorithm is applied to the 11 time series to forecast the next 18 
values given in the NN3 Forecasting Competition for Neural 
Networks and Computational Intelligence. 

I. INTRODUCTION 

A. Overview of the NN Approach 
This work presents a solution to the NN3 Forecasting 

Competition for the Neural Networks & Computational 
Intelligence, which is organized as special sessions of the 
International Symposium of Forecasting, ISF’07, 
International Joint Conference on Neural Networks, 
IJCNN’07, and International Conference on Data Mining, 
DMIN’07. The proposed solution is based on the classical 
nonlinear autoregression filter using time lagged 
feedforward networks. The innovation is made on the 
learning process, which employs the Levenberg-Marquardt 
rule and considers the long and short term stochastic 
dependence of passed values of the time series to adjust at 
each time-stage the number of patterns, the number of 
iterations, and the length of the tapped-delay line, in 
function of the Hurst’s value (H) of the signal. According to 
the stochastic characteristics of each series, H can be greater 
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or smaller than 0.5, which means that each series tends to 
present long or short term dependence, respectively. 

In order to adjust the design parameters and see the 
performance of the proposed prediction model, sinusoidal 
and square signals are used. Then, the neural network-based 
nonlinear filter is applied to the 11 time series to forecast the 
next 18 values given in the NN3 Forecasting Competition. 

B. Fractional Brownian Motion 
In this work the Hurst’s value is used in the learning 

process to modify on-line the number of patterns and 
number of iterations presented. The H parameter is useful 
for the definition of the Fractional Brownian Motion (fBm). 

The fBm is defined in the pioneering work by Mandelbrot 
and van Ness [6], through its stochastic representation 

 
(1.1) 

 
where, Γ(·) represents the Gamma function  

(1.2) 

 
and 0<H<1 is called the Hurst parameter. The integrator B is 
a stochastic process, ordinary Brownian motion. Note, that B 
is recovered by taking H=1/2 in (1.1). Here, it is assumed 
that B is defined on some probability space (Ω, F, P), where 
Ω, F and P are the sample space, the sigma algebra (event 
space) and the probability measure, respectively. So, a fBm 
is a continuous-time Gaussian process depending on the so-
called Hurst parameter 0<H<1. It generalizes the ordinary 
Brownian motion corresponding to H=0.5, and whose 
derivative is the white noise. 

The fBm is self-similar in distribution and the variance of 
the increments is given by 

(1.3) 

where, v is a positive constant.  
This special form of the variance of the increments 

suggests various ways to estimate the parameter H. In fact, 
there are different methods for computing the parameter H 
associated to Brownian Motion [2] [3] [5]. In this work, the 
algorithm uses a wavelet-based method for estimating H 
from a trace of the fBm with parameter H [1] [3] [4]. The 
trace path from the fBm are shown in Fig. 1, where can be 
noted the difference in the velocity and the amount of its 
increments. 
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Fig. 1. Three sample path from fractional Brownian 

motion for three values of H. 

C. Problem Statement 
The classical prediction problem may be formulated as 

follow. Given past values of a process that are uniformly 
spaced in time, as shown by x(n-T), x(n-2T), . . . , x(n-mT), 
where T is the sampling period and m is the prediction order, 
it is desired to predict the present value x(n) of such process. 
Therefore, we like to obtain the best prediction (in some 
sense) of the present values corresponding to a random or 
pseudo-random signal. 

The predictor system may be implemented using either an 
autoregression model-based linear or a nonlinear adaptive 
filter, depending on whether the process is linear or 
nonlinear. In the second case, neural networks are used as a 
nonlinear model building, in the sense that smaller the 
prediction error is (in a statistical sense), the better the net 
serves as model of the underlying physical process 
responsible for generating the data. In this work, time lagged 
feedforward networks are used. 

Thus, the present value of the signal is used as the desired 
response for the adaptive filter, and the past values of the 
signal supply as input of the adaptive filter. Then, the 
adaptive filter output will be the one-step prediction signal. 
In Fig. 2 is shown the block diagram of the nonlinear 
prediction scheme based on a neural network filter.  

In this work, a prediction device is designed such that 
starting from a given sequence {xn} at time n corresponding 
to a time series, it can be obtained the best prediction {xe} 
for the following 18 values sequence. 

Hence, it is proposed a predictor filter with an input 
vector lx, which is obtained by applying the delay operator, 
Z-1, to the sequence {xn}. Then, the filter output will generate 
xe as the next value, that will be equal to the present value 
xn. So, the prediction error at time k can be evaluated as 

( ) ( ) ( )n ee k x k x k= − , 
which is used for the learning rule to adjust the neural 
network weights. 

 
Fig. 2.  Block diagram of the nonlinear prediction. 

II. DESCRIPTION OF THE PREDICTION MODEL  

A. NN-Based Nonlinear Autoregression Model 
We propose a neural network-based nonlinear filter based 

on a nonlinear autoregression model [7] [8] [9]. The neural 
network used is a time lagged feedforward networks type. 
The neural net topology consists of lx inputs, one hidden 
layer of Ho neurons, and one output neuron. The learning 
rule used in the learning process is based on the Levenberg-
Marquardt method. 

The learning rule modifies the number of patterns and the 
number of iterations at each time-stage according to the 
parameter H, which gives short and long term dependence of 
the sequence {xn}, or from a practical point of view it gives 
the ruggedness of the time series. 

 

 
Fig. 3. Neural Network-based nonlinear predictor filter. 

 
In order to predict the sequence {xe} one-step ahead, the 

first delay taken off from the tapped-line xn is used as input. 
Therefore, the output prediction can be denoted by  

(1.4) 

where, Fp is the nonlinear predictor filter operator, and 
xe(n+1) the output prediction at n+1. 

B. The Proposed Learning Process 
The weight of the net are adjusted based on the 

Levenberg-Marquardt rule, which considers the long and 
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short term stochastic dependence of the time series measured 
by the Hurst’s parameter H.  

The proposed learning process consists on changing both 
the number of patterns and the number of iterations in 
function of the parameter H for each corresponding time 
series. The learning process is performed using a batch 
model. In this case the weight updating is performed after 
the presentation of all training examples, constituting an 
epoch. The pairs of the used input-output patterns are 

(1.5) 
where, xi and yi are the corresponding input and output 
pattern respectively, and Np is the number of input-output 
patterns presented at each epoch.  

Here, the input vector is define as 
(1.6) 

and its corresponding output vector as 
(1.7) 

 
Furthermore, the index i is within the range of Np given by 

xpo l3NH ⋅≤≤  
where, Ho is the number of the hidden neurons and lx is the 
dimension of the input vector. 

In addition, through each epoch the number of iterations 
performed it is given by  

( )1H2i1 ot −≤≤ . 
The proposed criterion to modify the pair (it , Np) is given 

by the statistical dependence of the time series {xn},  
supposing that is a fBm. The dependence is evaluated by the 
Hurst’s parameter H, which is computed using a wavelet-
based method [1] [4].  

Then, a heuristic adjustment for the pair (it ,Np) in 
function of H according to the membership functions shown 
in Fig. 4 is proposed. 

Finally, the number of inputs of the nonlinear filter is 
tuned —that is the length of tapped-delay line, according to 
the following heuristic criterion: when the training process is 
completed, both sequences, {xn} and {{xn},{xe}}, should have 
the same H parameter. If the error between H({xn}) and 
H({{xn},{xe}}) is grater than a threshold parameter θ the 
value of lx is increased (or decreased), according to lx ± 1. 
Explicitly, 

( )θ⋅+= sign1ll xx . 
 

Here, the threshold θ was set about 5%. 

III. MAIN RESULTS 

A. Set-up of Model and Learning Process   
The initial conditions for the filter and learning algorithm 

are shown in Table 1. The initial number of hidden neurons 
and iteration are set in function of the input number. 

Table 1 shows the initial conditions of the learning 
algorithm used for forecasting the 11 time series, which 
sizes have a variable length, between 120 and 170 values.      

 
Fig. 4. Heuristic adjustment of (it, Np) in terms of H. 

 
Variable Initial Condition 

lx 16 
Ho lx/3.2 
it Ho-1 
H 0.5 

 
Table 1.  Initial condition of the learning algorithm.  

 

B. Preliminary Results Using Other Ttime Series 
In order to test the proposed design procedure of the 

neural network-based nonlinear predictor, an experiment 
with sinusoidal and square signals was performed. The 
performance of the filter is evaluated using the mean 
Symmteric Mean Absolute Percent Error (SMAPE) 
proposed in the NN3 evaluation:  

 
(1.8) 

 
where, t is the time observation, n is the test set size, s each 
time series, Xt  and Ft are the actual and the forecast time 
series values at time t respectively.   

The SMAPE of each series s calculates the symmetric 
absolute error in percent between the actual Xt and its 
corresponding forecast Ft value, across all observations t of 
the test set of size n for each time series s. 

Fig. 5 shows the predictor nonlinear-filter response, 
giving the 16 future values for a sinusoidal time series. The 
used sine time series has a period T=0.48 s, and it is sampled 
at T0=0.05 s. The initial length of the tapped-delay line was 
set-up at 16 taps, and at the end of the learning process got 
be equal to 16. 

For a square time series, Fig. 6 presents the forecasted 18 
values. Here the value of H, across for the complete time 
series {xn} and {xe}, differs at a 5%. To improve the 
forecasting performance of the neural network filter, it is 
used as initial condition of lx= 17, in order to increase H of 
the {xe}. The new results are shown in Fig. 7, where the 
percentage is declined in the order of 2%.  

The filter structure and learning parameters are adjusted at 
each time- sample in function of the H value. The evolution 
of those parameters is shown in Fig. 8, where can be note 
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the variation of the number of used pattern in the learning 
process. Given that the number of iterations at each epoch is 
small at the beginning, there are not changes at the 
parameters. Then, for more learning time the computation of 
H can be evaluated more accurately, which can got to set the 
values of (Np, it), as is shown in Fig. 8. 
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Fig. 5. Prediction of a sinusoidal time series. 
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Fig. 6.   Prediction of the next 18 values of a square time 

series. 
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Fig. 7. Final prediction after adjusting the length of the 

tapped-delay line of neural network in function 
of the H error. 
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C. Main Prediction Results for the NN3 Time Series   
In the following figures are shown the forecast for the 

time series number 2 and 4 of the 11 ones proposed in the 
NN3 competition. 
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Fig. 9. Time forecast for the time series No 2. 
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Fig. 11. Time series number 4 with H nearly 1. 
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   Fig. 12. Evolution of the learning algorithm’s 
parameters. 

D. Main Results   
The performance of the neural network-based predictor 

filter is evaluated through the SMAPE index, Eq. (1.8), 
across the 11 time series given in the NN3 competition. Fig. 
13 shows the evolution of the SMAPE index for a 
traditional neural network filter, which uses a learning 
algorithm with fixed parameters. And another named 
modified neural network filter, which is proposed in this 
work and use the H parameter to adjust heuristically either 
structure of the net or parameters of the learning rule.    
 

IV. CONCUSSION 
In this work a feedforward neural networks-based 

nonlinear autoregression (NAR) filter for forecasting time 
series has been presented. The learning rule proposed to 
adjust the neural net weights is based on the Levenberg-
Marquardt method. And in function of the long and short 
term stochastic dependence of the time series, evaluated by 

the Hurst parameter H, an on-line heuristic adaptive law is 
proposed to update the neural net topology, number of input 
taps, and the number of patterns and iterations at each time-
stage. The main results shows a good performance of the 
predictor system applied to the 11 time series, proposed in 
the NN3 competition, due to we obtained similar roughness 
for both the original and the forecast time series, evaluated 
by H and He respectively. These results encourage one to go 
on working with this new learning algorithm, applying to 
other neural network models, duo to the time series 
generated by humans interaction presents short and long 
term stochastic dependence. 
 

 

Fig. 13. The SMAPE index applied over the 11 time 
series. 
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