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Abstract—During the Spring term of 2007, the Machine that current methods of computational intelligence do not
Learning seminar at Jacobs University Bremen tackled theNN3  consistently outperform the standard, much simpler methods
Artificial Neural Network and Computational Intelligence Fore- i, e tradition of statistical forecasting, and who wonder
casting Competition The objective was to forecast 111 monthly, o
financial timeseries (of unknown origin) by 18 months. We im- why this s'lmple lesson seems so hard to accept... .
plemented a number of standard textbook prediction methods ~ We decided to work on the complete group of 111 time
(exponential smoothing, dampened exponential smoothing) as a series. We first implemented some of the standard textbook
baseline; compared them with likewise standard methods from [9] predictors which in [8] were presented as robust and
computational intelligence (feedforward NNs, support vector fan competitive; here we will report only on (i) dampened
regression (SVR), local methods, wavelet-decomposition based exponential smoothing and (i) Theta prediction [1], based
predictors) and found no convincing advantage; and finally s . . -
opted for recurrent neural networks of the Echo State Network  ©n likewise standard decompositions of the series into a
type, which we bundled in large voting collectives which were trend, cycle, and residual components. This provided us
trained on blocks of time series. with a baseline. We then proceeded to try out methods of
computational intelligence, where each of the five seminar
) _ participants was in charge of one of the following kinds

Since people become aware of the movement of time, ey methods: (jii) local methods (following [10]), (iv) multi-
dreamed on know[ng what W|I_I happen next. "It is far betteigyer perceptrons, (v) support vector machines, (vi) wavelet
to foresee even without certainty than not to foresee at _a!becomposition based predictions (following [12]), and (vii)
were the words of the French mathematician and physiCighrier decomposition based predictions. It turned out that
Henri Poincag. To us humans, it seems that knowing thgnese methods indeed did not fare better than (dampened or
future can ameliorate it, or at least can prepare us to recei¥re) exponential smoothing.

It , ) , ) _ Finally, we adopted Echo State Networks (ESNs), a re-
Across history, there have been diverse philosophical digyrent ‘neural network (RNN) architecture which in the
sertations on the idea that the future could be predlct%st has been applied to other time series modelling tasks
by the knowledge of the past. Nowadays, that thought i§4] [5]). we devised a scheme where a collective of many
reflected, among others, in the utilization of machine learning o, networks is trained on an entire subset of the 111
methods for forecasting. In a similar way to the human mingompetition series, and the predictions of the individual
mathematical models can be trained to detect rules in tesns are then combined to produce the ultimate predictions
evolution in time of different variables, and then use sucly, the competition. In this paper we focus on the ESN-based
rules to predict future events. prediction and mention the results which we obtained with

The NN3 Avrtificial Neural Network and Computational the other methods (i) — (vii) only for purposes of comparison.
Intelligence Forecasting Competition  (www.

neural-forecasting-competition.com ), Il. ECHO STATE NETWORKS

sponsored by the International Institute of Forecasters Echo State Networks present an RNN architecture which

(www.forecasters.org ) and the statistical software in its basic version is made of two main components:

company SAS Www.sas.com ), is a stage where this o a large, randomly created, non-adaptive "reservoir”

ancient dream is put to a dire and very mundane test. One RNN, and

hundred and eleven time series, of which not more is known . g set of readout neurons (one per output signal dimen-

than that they come from the world of finance and that they  sjon) connected to the reservoir.

are monthly series, have to be predicted by 18 months.  Each readout neuron is connected to all (or a subset) of
Such a task seemed a perfect project for our Machinfie reservoir units; the reservoir-to-output connections are

Learning seminar at Jacobs University Bremen. On one hanfle only trainable connections in an ESN. An ESN operates,

it required an substantial amount of study, investigation, anghg is trained, as follows:

hands-pn work, a_n,d on the other hand the Cha'!e”‘-?le Of. The reservoir functions as a nonlinear excitable medium.

producing competitive results was the perfect motivational |15 excited by input signals fed into it through external

“kick”. An ad(_jltlonal spur was to_take up the gauntle_d thrown input neurons and/or feedback connections from the
at our machine learner’s feed in [8], who essentially state output neurons.

The authors are students resp. faculty at Jacobs University, 28759 Bremen,® When the re_zservow is fed by 'nPUt signals, eaCh_ of the
Germany. Corresponding author: H. Jaeger, h.jaeger@jacobs-university.de  reservoir units generates a nonlinear transform signal of

I. INTRODUCTION



the driving input. Due to the recurrency of the reservoir, We defined the blocks by visual inspection of figure 1.
information is integrated over time. The memberships of the blocks thus obtained are listed in
« The output neurons are, typically, simple linear readoutble 1.
devices. Each output neuron computes its output sig- Three further series (nrs. 76 88 109) were not sufficiently
nal by linearly combining the signals obtained at thaligned in time with any of the blocks; these three series
reservoir units; the linear combination weights are thevere predicted individually using the SVR predictor.
synaptic connection weights. L
o« An ESN is trained, in a supervised schema, by firef Cross-validation scheme
driving the reservoir with the teacher input (and/or In order to assess the performance of the comparison
the fed-back teacher output); and then secondly byethods and our ultimately used ESN method, we used a
computing the linear regression weights of the desiresimple cross-validation scheme. The last 12 points from each
output signals from the reservoir-internal signals. of the competition series was used as a validation set. All
A theoretical introduction to ESNs can be found in [2], anor f_|gures reported in t_able | refer to mean errors on these
practical guide and tutorial in [3]; an overview on current12 pomts, for mode!g trained on 'the remaining points. .
Since the competition submissions will be evaluated using

ESN research is provided by a special issue of Neural
Networks [6]. The basic working principle of ESNs was?he SMAPE error measure, we used the same error measure

simultaneously discovered in computational neuroscienc"’ESabaSIS for optimizing, comparing, and selecting prediction

as a biological information processing mechanism. In thig]e.thOdS based on validation scores on the W'th(.eld 12 last
domain, the principle is known under the name Lifuid points. Table | gives an overview of the block-wise mean
State l\/iachine$7] SMAPEs for three of our baseline predictors and the ESN

_ . redictors.
The neurons used within the reservoir can be of ane
type (sigmoid additive, leaky integrator, or spiking model8. Decomposition
of various degrees of biological accuracy). We used leaky p|| the time series were decomposed into trend-

integrator neurons for the NN3 competition. We defer &ycje seasonal and residual multiplicative components us-
complete formal specification to an eventual long versmmg the X-12-ARIMA seasonal adjustment program de-
of this paper. veloped at the United States Bureau of the Census
(/Mmww.census.gov/srd/www/x12a/ ). We used the
1. APPROACH automatic ARIMA model selection procedure that is imple-
mented in the program to find a suitable model for forecast-
In other work, H. Jaeger has found that ESNs can classifyg and backcasting the time series. A moving average with
stochastic (speech) time series very well when a large numbghyindow size of 39 for the trend estimation was used to
of very small ESNs are combined in a voting collectivg;roduce smoother trends that we found are better handled
[5]. Thus, one initial design decision was to employ suclg)y our prediction method.
collectives. Other decompositions (additive instead of muiltiplicative,
Preliminary investigations showed however no advantaggT| other smoothing window sizes) were tested for valida-
of such an ESN-based voting collective approach over th@yn set SMAPE with the ESN method and found inferior
other methods which we implemented. This motivated gathough often only by a small margin). The ESN method
second basic design decision, namely, to combine the timgs applied to these three components individually, and the

series into “blocks”, and train ESN predictors block-wisecomponent predictions reconstituted to the original format
This approach was based on the observation that the 134 multiplication.

competition series come in six clearly discernible groups,
where each group contains series which are approximatéfy Applying the ESN-based method block-wise
or perfectly co-temporal. Figure 1 illustrates this observation. For each of the three component versions of each of the
At this point we based our design on a bet: namely, thatix blocks, a collective of 500 ESNs was trained to predict
the series within a block had been obtained from somehailiat particular block-component. More specifically, if a block
causally correlated sources. If this was indeed the case, thesd N members, 500 reservoirs were randomly created, and
in principle it should be possible to improve the prediction okach of them was trained individually on the task to predict
a given series from a block, by utilizing information from thethe N-vector of time series one time step ahead. For training,
other series in the block. We carried out preparatory studi¢ise competition series minus the last 12 points were used.
where we used linear correlation measures to check whethfter training, the last 12 points were predicted by each
series within a block were systematically related; the findingSSN, via iterated 1-step predictions; the trend/season/residual
were mixed (some blocks had highly mutually correlatedomponent predictions of each ESN were recombined; these
subsets of series; some blocks hadn't; finally, there we&00 12-step predictions were then averaged; and finally, the
correlations across blocks). However, our eventual resulisean SMAPE (across th& series of the block) on the
supported the assumption of exploitable information transfeesulting mean-voted combination prediction of the 12 last
within blocks. block steps was calculated.
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Fig. 1. Time span of time series (sorted by end date). The grouping into 6 “blocks” is clearly discernible.

Block | Members Theta| Dampen| SVR | ESN
1 65 71 74 81 93 95 96 97 98 110 111 234 | 27.2 26.6 | 20.7
2 58 62 84 66 78 79 83 85 86 102 103 106 12.8 | 12.8 140 | 115
3 69 70 60 61 72 89 105 15.1 | 17.7 15.10| 13.0
4 51-57 63 67 68 73 75 77 80 87 90 101 107.4 7.9 6.4 5.6
5 59 64 82 91 92 94 99 100 104 108 109 | 9.2 9.3 8.7
6 1-50 19.2 | 18.9 176 | 175
TABLE |

BLOCK MEMBERS AND MEAN SMAPE SCORES OF FOUR PREDICTORS ON THE VALIDATION SET OF THE LASI2 POINTS (MODELS TRAINED ON
REMAINING INITIAL POINTS).

Each ESN was set up without external input, and witlgiven in an eventual long paper.
feedback from the output units into the reservoir (identical to
the setup described in [4] for chaotic time series prediction). IV. RESULTS

In most blocks, some series were shorter or longer than Of course, at the time of writing — a few minutes before the
others by a few steps. This was dealt with by trimming alsubmission deadline — this section must remain essentially
series which had “too early” values to the latest beginningoid. The validation set SMAPEs of the ESN method (see
time in the block. To cope with unequal end points, a twotable 1) look encouraging, but ... “the future’s not ours to
stage learning/prediction process was implemented that filste”.
filled the “end-gaps” and then proceeded to generate the
requisite further prediction points.
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