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1 Introduction

Extensive empirical experience suggests that traditional forecasting approaches are sub-
ject to more or less severe model misspecifications which affect true (out-of-sample) one-
as well as multi-step ahead forecasting performances. The main problems are due to
non-stationarity and non-Gaussianity. In order to overcome these difficulties, we propose
a prototypical design derived from a traditional adaptive state-space approach which is
suited for tracking non-stationarities. The proposed procedure has been heavily modi-
fied to account for true out-of-sample performances, for non-Gaussianity, for multi-step
performances as well as potential misspecifications.

2 The original state-space approach

2.1 The model

In practice time series are often decomposed into components:

Xt = Tt + Ct + St + It

where Tt is the trend, Ct is stationary (sometimes Ct is called a ‘cyclical’ component),
St is a seasonal process and It are random disturbances. Relying on that decomposition,
the following ‘classic’ model-based approach has been chosen as starting-point for our
method:

ξt = Fξt−1 + νt (1)

Xt = Hξt + εt (2)
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whereby

ξt
′ = (Tt, ∆Tt, St, St−1, ..., St−13)

F =




1 1 0 0 ... 0 0 0
0 1 0 0 ... 0 0 0
0 0 ar1 ar2 0 ... sar1 −ar1 · sar1

1 0 0 ... 0 0 0 0
0 1 0 ... 0 0 0 0
... ... ... ... ... ... ...
0 0 0 ... 1 0 0




H = (1, 1, 1, 0, ..., 0)

and the disturbance terms satisfy the usual iid and normality assumptions imposed in
the literature. The first two rows of F define Tt as an I(2)-process

Tt = Tt−1 + ∆Tt + ν1t

∆Tt = ∆Tt−1 + ν2t

where ∆Tt is a random-walk process determining the local trend growth. The third row
accounts for the cyclical and seasonal structures simultaneously by specifying

St = ar1St−1 + ar2St−2 + sar1St−12 − ar1 · sar1St−13

2.2 Optimization Criterion and Forecasting-Function

If all required model assumptions are satisfied, then the Kalman-filter can be used to
decompose the likelihood function into conditional one-step ahead distributions of the
one-step ahead forecasting errors. At the current boundary of the time series, the most
recent component estimates obtained by the Kalman-filter can then be used to generate
forecasts (basically, future innovations are equated to zero in the above state and obser-
vation equations 1 and 2).

Traditionally, components are estimated based on in-sample one-step ahead forecasting
performances. Forecasts (one- and/or multi-step ahead) are derived accordingly. At this
stage it is important to note that the above model assumptions legitimate the in-sample
one-step ahead (mean-square) error criterion, even in a strict multi-step ahead per-
spective, because the resulting forecasting functions are maximum likelihood estimates
of the future observations in this restricted theoretical framework.

3 ‘Mods’

In practice, neither of the above model assumptions are satisfied and therefore the tradi-
tional optimization criterion cannot be justified by invoking efficiency. We here propose
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a set of modifications of the traditional ‘pure’ model-based approach in order to account
for misspecification issues.

3.1 Out-of-Sample One- and Multi-Step-Ahead Performances

True out-of-sample one-step ahead forecasting errors can be obtained conveniently from
the updating-step of the Kalman-filter equations. More generally, multi-step ahead out-
of-sample errors are obtained by letting the ‘empty’ updating equations (future innova-
tions are set to zero) run until the desired forecasting horizon is attained. Therefore h-step
optimization criteria can be generated by relying on the corresponding errors. More pre-
cisely, the hyperparameters (unknown innovation variances and starting values for the
Kalman recursion) are optimized separately for each forecasting horizon h = 1, ..., 18.
This allows to match the adaptivity (of the resulting forecasting functions) to the in-
tended forecasting horizon.

3.2 Robustification

It is well-known in practice that the mean-square error criterion emphasizes extreme ob-
servations and that outliers can often not be detected by analyzing (in-sample) residuals.
Fortunately, out-of-sample forecasting errors are less subject to ‘smearing-effects’. There-
fore, the proposed optimization criterion can be robustified by truncating the traditional
up-dating formulas in the case of ‘huge’ unexpected out-of-sample deviations.

3.3 Numerical optimization

Determining hyperparameters in our approach is a tricky numerical task. In particular,
one has to account for non-linearities induced by the above robustification step. In
order to overcome problems associated to local extrema (of the generalized optimization
criterion), genetic algorithms are used in conjunction with local gradient procedures. The
latter enhance convergence in the vicinity of the optimum.

3.4 Forecasting combination

It is well-known that a combination of various forecasting functions often improves over
the individual forecasts because of misspecification issues. In our approach, we can rely
on 18 different forecasting functions that are obtained by optimizing hyperparameters
for each individual forecasting horizon h = 1, ..., 18. The final submitted forecasts are
obtained by computing the median of the 18 estimates for each h = 1, ..., 18.
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3.5 Adaptivity

Besides the inherent adaptivity of the underlying state-space approach we emphasize more
specifically forecasting issues at the current boundary of the time series by discounting
past forecasting performances at an exponentially decreasing rate in our optimization
criteria.

4 Conclusion

The proposed forecasting method starts with a classical model-based approach and evolves
into an almost non-parametric design based on extensions and generalizations that ac-
count for frequently observed misspecification problems such as Non-Gaussianity (robus-
tification), overfitting (out-of-sample forecast combination) or numerical issues (genetic
algorithm). It is a pure prototype - in the sense that we do not have any practical
experience up to yet - that is intended for future applications in macroeconomics and
social sciences. In particular, there are some important ‘tuning-parameters’ whose pre-
cise settings are unknown at the present stage. Moreover, numerical problems still seem
to affect performances for particular time series and particular forecasting horizons (the
latter problem is tackled, at least partially, by computing medians of the available 18
forecasting functions).

Our interest in participating to the nn3-competition is to assess the relative performance
of our prototype in this experimental setting, in particular when compared to traditional
statistical methods as well as non-linear forecasting rules.
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