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Abstract— This article describes our method used for the
2007 Forecasting Competition for Neural Networks and Com-
putational Intelligence. We have employed the first-order dif-
ference of time series for dealing with the seasonality of the
monthly data. Since the differencing removes the trend of time
series, we have developed a method to estimate the trend.
Moreover, we have used the bagging of competitive associative
net called CAN2 as a learning predictor, where the CAN2 is
for learning an efficient piecewise linear approximation of a
nonlinear function, and the bagging for reducing the variance
of the prediction.

I. INTRODUCTION

This article describes the method which we have used
for the 2007 Forecasting Competition for Neural Networks
and Computational Intelligence. At the competition, the com-
petitors should forecast 11 or 111 time series as accurately
as possible by means of using their methods. One of the
difficulties of this problem is that the 11 and 111 time series
are monthly data which involve various properties of time
series, such that some are stationary but some have positive
trend, not all but some involve seasonality with the period 12,
some seem to have outliers, and so on. Thus, we would like
to employ or develop a general method which can overcome
the above difficulties. One of the techniques which we have
employed is to use the first-order difference of time series
for dealing with the seasonality. Here, since the differencing
removes the trend of the time series, we have also developed
a method to estimate the trend of time series.

On the other hand, to cope with the competition problem,
our first decision was to use our competitive associative
net called CAN2. Here, the CAN2 has been introduced
for utilizing competitive and associative schemes [1], [2]
and learning an efficient piecewise linear approximation
of a nonlinear function. This approach has been shown
effective in several areas such as function approximation,
control, rainfall estimation and time series prediction [3]-
[8]. Here, note that the differences of the CAN2 to other
similar methods are as follows. The method of local linear
models [9] uses linear models obtained from K-nearest
neighbors of input vectors while the CAN2 utilizes linear
models (associative memories) optimized by the learning
method involving competitive and associative schemes. The
CAN2 may be viewed as a mixture-of-experts model that
utilizes linear models as experts and competitive scheme as
gating. Although the MARS (multivariate adaptive regression
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splines) model [10] as a mixture-of-experts model executes
continuous piecewise linear approximation, the CAN2 exe-
cutes discontinuous one intending for optimizing each linear
model in the corresponding Voronoi region. Further, we
employ the bagging scheme [11] for reducing the variance
of the prediction by the CAN2.

In the following sections, we describe our method in detail,
some experimental results, and then the conclusion.

II. METHOD FOR THE FORECASTING COMPETITION

Here, we show our method employed for the forecasting
competition after formalizing the competition problem.

A. The Problem to be Solved

At the competition, a set of real valued monthly time series
yi(t) (∈ R) is provided, where t ∈ T given

i , I[sgiven
i , tgiven

i ]
denotes a point in time or a month, and i indicates the
index of a time series in the index set IA , I[1, 111] of
the dataset A (or the complete dataset) or IB , I[101, 111]
of the dataset B (or the reduced dataset). Here, I[s, t] ,

{s, s + 1, s + 2, · · · , t} indicates a set of integers from s
to t. For each time series yi(t), a competitor should predict
(forecast) yi(t) for the fixed time horizon of h = 18 months,
or for t ∈ T forecast

i , I[tgiven
i +1, tgiven

i +h]. The forecasts
ŷi(t) for t ∈ I[ti + 1, ti + h] are evaluated based on the
SMAPE (Symmetric Mean Absolute Percent Error) given by

SMAPE =
1

h

ti+h∑

t=ti+1

|ŷi(t) − yi(t)|

(ŷi(t) + yi(t))/2
× 100. (1)

B. Forecasting Using Original Time Series

Here, we show the forecasting using the original time se-
ries on which the forecasting using the first-order difference
shown below is based. Firstly, we suppose that the time series
yi(t) satisfies

yi(t) = fi(xi(t)) + εi(t), (2)

where εi(t) represents noise, and fi(xi(t)) is a nonlinear
function of a vector xi(t) , (xi1(t), xi2(t), · · · , xiki

(t))T .
Here, the jth element xij(t) of xi(t) is a data point of a
given time series with a delay, yl(t − τ) = ylij

(t − τij),
whose index lij and delay τij are selected from all l and τ



so that ylij
(t − τij) has the jth largest correlation:

Ri(l, τ)

=

∑
t

(
yi(t) − yi(t)

) (
yl(t − τ) − yl(t − τ)

)

√
∑

t

(
yi(t) − yi(t)

)2
√

∑
t

(
yl(t − τ) − yl(t − τ)

)2
,

(3)

where yi(t) and yl(t − τ) indicate the mean of yi(t) and
yl(t − τ), respectively. Here, the range of t for the mean is
set so that both yi(t) and yl(t−τ) can have provided values,
and we set Ri(l, τ) = 0 if the number of yi(t) and yl(t −
τ) for the mean is little than h = 18. In order to forecast
unknown values of the time series, we use the bagging of
the CAN2 (see below for details) as a predictor. Further,
for estimating the performance of the predictor and tune the
parameter values of the predictor, we run validation tests
which use yi(t) (t ∈ T train

i = I[sgiven
i , ti]) for training

the predictor, and yi(t) (t ∈ T pred
i = I[ti + 1, ti + h]) for

validating the prediction, where ti is a point in time which
satisfies ti ≤ tgiven

i − h for validation. Of course, we can
make the final forecast by using ti = tgiven

i . The predictor,
at first, learns yi(t) (t ∈ T train

i ) to make the multi-step
prediction given by

ŷi(t) = fi(x̂i(t), θi), (4)

where θi represents the parameter values of the
predictor, and the element of the vector x̂i(t) ,

(x̂i1(t), x̂i2(t), · · · , x̂iki
(t))T is given by

x̂ij(t) ,

{
ylij

(t − τij) for t − τij ∈ T train
lij

,

ŷlij
(t − τij) for t − τij ∈ T pred

lij
.

(5)

where the elements x̂ij(t) are determined successively for
t = ti + 1, ti + 2, · · · . Thus, the learning, forecasting, and
validation can be done by the above procedure.

C. Forecasting Using First-Order Difference

The forecasting using the first-order difference is described
as follows (see Section II-E.1 for detailed reasons of this
method). First, we make the first-order difference ∆yi(t) =
yi(t)− yi(t− 1), and use a predictor to learn ∆yi(t) for t ∈
T train\{sgiven

i } = I[sgiven
i + 1, · · · , ti], and get the multi-

step prediction ∆̂yi(t) = fd
i (∆̂xi(t), θ

d
i ) for t ∈ T pred

i =

I[ti + 1, ti + h], where the elements of the vector ∆̂xi(t) ,

(∆̂xi1(t), ∆̂xi2(t), · · · , ∆̂xikd
i
(t))T are generated by means

of replacing x̂ij(t) and ylij
(t − τij) in Eq.(5) by ∆̂xij(t)

and ∆ylij
(t− τij), respectively. The dimension kd

i is of the

vector ∆̂xi(t), and fd
i (∆̂xi(t), θ

d
i ) is a nonlinear function of

∆̂xi(t) achieved by the predictor with the parameter values
represented by θd

i . Then, the prediction of yi(t) for t ∈ T pred
i

is constructed by

ŷd
i (t)|ti

, yi(ti) +
t∑

j=ti+1

∆̂yi(j)|ti
. (6)

Here, ∆̂yi(j)|ti
is the prediction ∆̂yi(j) obtained by the

predictor that has learned ∆yi(t) for t ∈ I[sgiven
i + 1, ti],

and we sometimes neglect “|ti
” for simplicity.

As shown in Section II-E.1, the trend of the prediction
ŷd

i (t)|ti
is not so reliable, so we first employ an averaging

method. Namely, we use

ŷ
d(a)
i (t) ,

1

a

a−1∑

l=0

t∑

j=ti+1

ŷd
i (t)|ti−l, (7)

where a(≥ 1) is the number of averaging. Further, we
employ a method to modify the trend of the prediction as
follows: first, we make a mth order polynomial approxima-
tion ỹ

(m)
i (t) =

∑m

j=0 ajt
j of yi(t) for t ∈ T given and a

trial value of yT = y(ti + h) for m = 0, 1, 2, · · · , where
ỹ
(m)
i (t) represents the mth order polynomial trend over

T given
i ∪{ti +h}. Next, we make a first-order approximation

ỹ
(m,1)
i (t) = b0+b1t of ỹ

(m)
i (t) for t ∈ I[ti−h+1, ti], where

ỹ
(m,1)
i (t) represents the first-order short-term trend of yi(t).

We can select the best yT to minimize the loss function
L(ỹ

(m,1)
i , yi, ti − h + 1, ti) by means of a line search of

yT for each m = 0, 1, 2, · · · . Further, we can determine m
from a view of ỹ

(m)
i (t) and yi(t) (see the experimental result

shown below). With the selected yT = y∗

T and m = m∗, we
obtain the first-order short-term trend ỹ

(m,1)
i (t) = b∗0 + b∗1t

for the forecast period T forecast
i . On the other hand, from

the prediction ŷd
i (t), we can obtain the first-order trend

(approximation) as ŷ
(d,1)
i (t) = c0+c1t. Then, we can modify

the trend of the prediction ŷd
i (t) as

ŷ
d(a,m)
i (t) = ŷ

d(a)
i (t) + (b∗0 − c0) + (b∗1 − c1)t. (8)

D. CAN2 and the Bagging

1) Assumptions on the given dataset: Let Dn ,

{(xi, yi)|i ∈ In} be a given training dataset, where In ,

{1, 2, · · · , n} denotes the index set of the dataset, and
xi , (xi1, xi2, · · · , xik)T and yi denote an input vector and
the target scalar value, respectively. Note that xi and yi,
respectively, correspond to xi(t) and yi(t), or ∆xi(t) and
∆yi(t), introduced in the previous section. Here, we suppose
the relationship given by

yi , ri + εi = f(xi) + εi, (9)

where ri , f(xi) is a nonlinear function of xi, and εi

represents zero-mean noise with the variance σ2
i .

2) CAN2: A CAN2 has N units (see Fig. 1). The
jth unit has a weight vector wj , (wj1, · · · , wjk)T ∈
R

k×1 and an associative matrix (or a row vector) M j ,

(Mj0,Mj1, · · · ,Mjk) ∈ R
1×(k+1) for j ∈ IN ,

{1, 2, · · · , N}. The CAN2 approximates the above function
f(xi) by

ŷi , f̂(xi) , ỹc(i) , M c(i)x̃i, (10)

where x̃i , (1,xT
i )T ∈ R

(k+1)×1 denotes the (extended)
input vector to the CAN2, and ỹc(i) = M c(i)x̃ is the output
value of the c(i)th unit of the CAN2. The index c(i) indicates



xi1

xik

w11

w1k

M11

M1k

M10

Competitive
Cells

Associative
Cells

wN1

wNk

MN1

MNk

MN0

...

...

yN
~y1

~

...

...Input

xi0=1

1st unit Nth unit

~yc(i)Output

...

Fig. 1. Schematic diagram of the CAN2

the unit who has the weight vector wc(i) closest to the input
vector xi, or

c(i) , argmin
j∈IN

‖xi − wj‖. (11)

The above function approximation partitions the input space
V = R

k into the Voronoi (or Dirichlet) regions

Vj , {x
∣∣ j = argmin

i∈IN

‖x − wi‖}, (12)

for j ∈ IN , and performs piecewise linear approximation of
the function f(x).

Note that we have developed an efficient batch learning
method (see [6] for details), and we use it in the present com-
petition. The method consists of iterations of (1) competitive
learning based on a gradient method, (2) associative learning
employing recursive least squares, and (3) reinitialization
of units based on an ”asymptotic optimality” criterion (see
[4]) for overcoming local minima problems of the gradient
method. We have used the same parameter values as for the
function approximation problems shown in [6], except the
number of units involved in the CAN2 which is tuned so that
the prediction achieves smaller SMAPE for the validation
periods (see Section II-B and Section III).

3) Bagging: Let Dαn∗
j be the jth bootstrap sample set

(multiset, or bag) involving αn elements, where the elements
in Dαn∗

j are resampled randomly with replacement from the
given training dataset Dn, and α > 0. Here, we would
like to mention that an element in Dn is not in Dαn∗

j

with the probability (1 − 1/n)αn which approximately is
exp(−α) when n is large. Thus, the number of “individual”
or different elements in Dαn∗

j approximately is neff(α) ,

n(1 − exp(−α)). For example, neff(1) ' 0.632n which is
used in the conventional bagging methods [11], [12], and
neff(0.7) ' 0.503n, which we have employed in the present
method because of its empirical good performance in several
prediction problems (see e.g. [8]).

The bagging (bootstrap aggregation) for estimating the
target value ri = f(xi) is done by the mean given by

ŷb∗

i ,
1

b

∑

j∈Ib

ŷj
i , (13)

where ŷj
i , ŷj(xi) denotes the prediction by the jth

predictor (CAN2) which has learned Dαn∗
j .

E. Analysis of the Method

Here, we show some analysis of the present method for
examining how the method works.

1) Forecasting using the first-order difference: An advan-
tage of using the first-order difference is supposed to be based
on that the range of the input vector ∆xi(t) is smaller than
that of the original input vector xi(t). Thus, even if there are
few training data similar to the data to be predicted in the
original input space, much more training data are available
via the first-order difference. For example, suppose a time
series yi(t) = y1(t)+y2(t) consisting of y1(t) = y1(t−1)+1
and y2(t) = y2(t− 1)− y2(t− 2) + 1 with y1(1) = y2(1) =
y2(2) = 1. Then, y1(t) = t = 1, 2, · · · is an increasing
series, and y2(t) = y2(t + 6) = 1, 1, 0,−1,−1, 0, · · · for
t = 1, 2, 3, 4, 5, 6, · · · is a periodic series with the period 6.
Thus, yi(t) is an increasing series with fluctuation. Then,
the function yi(t) = fi(xi(t)) of the embedding vector
xi(t) = (yi(t − 1), y(t − 2), · · · , yi(t − ki))

T is hard to
be learned because xi(t) is different for every t = 1, 2, · · · ,
where the dimension ki is assumed to be sufficiently large
for fi(xi(t)) to be a function (e.g. ki ≥ 6). However,
∆yi(t) = 1 − y2(t − 2) is a periodic series with the
period 6, and then the function ∆yi(t) = fd

i (∆xi(t)) of
∆xi(t) = (∆yi(t − 1),∆yi(t − 2), · · · ,∆yi(t − kd

i )) is
easy to be learned because there are only 6 different patterns
of input-output pairs (∆xi(t), y(t)) to be learned and they
appear many times in a training dataset with a sufficiently
large number of members, where kd

i ≥ 2 is necessary for
fd

i (∆xi(t)) to be a function.
A disadvantage of using the first-order difference is that

the trend of the prediction is unstable and unreliable, which
we can see from the following example: suppose that a time
series yi(t) = yi(t − 1) + a + εt for t = 1, 2, · · · is given,
where yi(0) = 0, a 6= 0 and εt represents a noise. Then,
the time series without noise is represented by ri(t) = at,
and the first-order difference without noise is written by
∆yi(t) = (1− b)a+ b∆yi(t−1) for a certain b (0 ≤ b ≤ 1).
If a predictor learns to predict the ideal first-order difference
without noise ∆̂yi(t) = (1−b)a+b∆yi(t−1), the prediction
of ∆yi(t) for t = ti + 1, ti + 2, · · · is given by ∆̂yi(t)|ti

=
a + (εti

− εti−1)b
t−ti . Thus, the reconstructed prediction is

given by ŷd
i (t)|ti

= at+ εti
+(εti

− εti−1)
∑t−ti

j=1 bj . So, the
absolute value of the prediction error,

∣∣ŷd(t)|ti
− r(t)

∣∣ =

|εti
+ (εti

− εti−1)
∑t−ti

j=1 bj | increases with the increase of
time t for εti

6= εti−1 and b 6= 0, and the sign of the
error depends on the noise εti

and εti−1. Thus, in order to
overcome this instability of the trend, we have developed the
method described in Section II-C.



2) Coefficients of the bagging: Instead of the bagging
prediction given by Eq.(13), a more general aggregation of
predictions is given by

ỹb∗

i ,
∑

j∈Ib

bj ŷ
j
i , (14)

where we suppose that bj ≥ 0 and
∑

j∈Ib bj = 1. Since the
prediction ŷj

i involves the variation caused by the noise εi in
the training data and the variation of the bootstrap resampling
dataset Dαn∗

j for j ∈ Ib, the mean µi, the variation δj
i and the

variance ρ2
i of the prediction ŷj

i = µi +δj
i are given by µi ,

E(εi,D
αn∗

j
)

(
ŷj

i

)
, δj

i , ŷj
i − µi, ρ2

i , E(εi,D
αn∗

j
)

(
(δj

i )
2
)

,

where E(εi,D
αn∗

j
)(·) is the mean with respect to the variation

of εi and the variation of Dαn∗
j . Since the predictor learns

yi = ri + εi, the variation δj
i of the prediction is supposed

to have a positive correlation with εi, or

E(εi,D
αn∗

j
)

(
δj
i εi

)
> 0. (15)

Then, the expectation of the squared prediction error
(ẽb∗

i )2 = (ỹb∗

i − yi)
2 is given by

E(εi,D
αn∗

j
)

(
(ẽb∗

i )2
)

=
∑

l∈Ib

b2
l

[
(µi − ri)

2
+ E(εi,D

αn∗

j
)

(
(δj

i − εi)
2
)]

,

≥
1

b

[
(µi − ri)

2
+ E(εi,D

αn∗

j
)

(
(δj

i − εi)
2
)]

, (16)

where the inequality is derived by the arithmetic-geometric
mean inequality, and the equality holds when bj is constant.
Thus, the mean of the square error of the aggregation takes
the minimum when bj = 1/b (j ∈ Ib). Therefore, the
bagging prediction given by Eq.(13) is supposed to be the
most effective predictions among the aggregation given by
Eq.(14).

3) Bias and variance decomposition of prediction error:
The generalization error or the prediction error for the
population data is given by Lgen ,

∑
i∈Ipop

(
eb∗

i

)2
, where

Ipop indicates the index set of the population, eb∗

i = ŷb∗

i −yi

indicates the prediction error. Let us suppose ŷb∗

i = µb∗

i +δb∗

i ,
where µb∗

i , E(εi,D
αn∗

j
)

(
ŷb∗

i

)
(= µi) is the prediction mean,

δb∗

i = (1/b)
∑

j∈Ib∗ δj
i the variation from the mean. Then,

the expectation of Lgen is given by

E(εi,D
αn∗

j
)(L

gen) =
∑

i∈Ipop

(
(βb∗

i )2 +
ρ2

i

b
+ σ2

i

)
, (17)

where βb∗

i , E(εi,D
αn∗

j
)

(
ŷb∗

i − yi

)
= µb∗

i − ri denotes the
bias term, and ρ2

i /b represents the variance term. Thus, the
variance term of the bagging, ρ2

i /b, can be reduced by the
increase of b. Here, we would like to note that in order to re-
duce the bias term (βb∗

i )2, we have developed a bagboosting
method [13] for the CAN2, but we had few improvements.
We think it is because the amount of the bias is not so large.
Since we had suffered from a huge computational cost with
little improvement of the performance, we abandoned the use
of the bagboosting method.

In addition, the above analysis is to see that the variance of
the prediction is reduced by the bagging. Here, the reduction
of the variance is important for selecting optimal parameter
values, such as the input elements xij = ylij

(t − τij) (see
Section II-B), and the number N of the units in a CAN2
(see Section II-D.2). Namely, we will select such parameter
values so that they can achieve smallest SMAPE for a couple
of validation periods, and the SMAPE chages largely from
period to period if the variance is big.

III. EXPERIMENTAL RESULTS

Here, we show some experimental results for the reduced
dataset consisting of 11 time series. We have run a validation
test for y101(t) or the 101th time series. The predictions using
the first-order difference for a validation period T pred

101 =
I[157, 174] are shown in Fig. 2, where the initial time
t = 1 represents January 1978, which is the earliest time
of all provided time series. From (a), we can see that both
the predictions using the first-order difference, ∆̂y101(t)|156
and ∆̂y101(t)|155, predict the first-order difference ∆y101(t)
of the given time series y101(t) very well. However, from
(b), we can see that the directly reconstructed time series
ŷd
101(t)|156 and ŷd

101(t)|155 are not so good. Namely, we can
see that the error of them is bigger than that of ∆̂y101(t)|156
and ∆̂y101(t)|155. However, from Fig. 2(c), we can see that
the modified predictions ŷ

d(2,m)
101 (t) for m = 0, 1, 2 seem

to have achieved a good performance. Here, as shown in
Fig. 2(d), (e) and (f), we have used the mth order polynomial
approximation ỹ

(m)
101 (t) of the original data and a expected

final value yT = y101(192) (which is tuned by a line search
to be yT = y∗

T ; see Section II-C) for obtaining ŷ
d(2,m)
101 (t).

As shown at the comment in Fig. 2(c), the SMAPE as a
performance index of ŷ

d(2,m)
101 (t) is smallest for m = 1 in

this prediction period I[157, 174]. However, we can see that
every approximation seems reasonable from Fig. 2(d), (e)
and (f). Therefore, as one of the solutions, we decide to use
m = 0 which has the medium trend. Here, we would like to
note that the tuned final value y∗

T = y101(192) determine the
trend of the forecasting period I[175, 192] for the submission.
Actually y∗

T = 5116, 5192, 4996 for m = 0, 1, 2 in Fig. 2(d),
(e), (f), respectively, and y∗

T for m = 0 takes the medium
value. Further, the tuned final value y∗

T for m = 3, 4, 5 are
4801, 5349, 6402, respectively, which also show that m = 0
is reasonable. However, a larger m bigger than 2 often
provided unreasonable trend. Thus, we usually compare the
predictions only for m = 0, 1, 2.

The predictions for the forecasting period T forecast
101 =

I[175, 192] for the submission are shown in Fig. 3. Here,
the target values y101(t) are unknown for t ∈ T forecast

101 .
Although both ŷd

101(t)|174 and ŷd
101(t)|173 increase to above

5500 at t = 192, we have examined that ŷd
101(t)|172 de-

creases to below 5000 as the increase of time. Thus, we
think that the modified predictions ŷ

d(2,m)
101 (t) for m = 0, 1, 2

are reasonable. We can also confirm that ŷ
d(2,m)
101 (t) for

m = 0 achieves the medium trend. Further, the difference
of ŷ

d(2,m)
101 (t) for m = 0, 1, 2 is not so large, so the selection
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Fig. 2. Example of predictions using the first-order difference for a validation period. (a) Predictions c∆y101(t)|156 and c∆y101(t)|155 of the first-order
difference ∆y101(t). (b) Reconstructed predictions ŷd

101|156 and ŷd
101|155. (c) The modified predictions ŷ

d(2,m)
101 (t) for m = 0, 1, 2, where the SMAPE

is 0.463, 0.462 and 0.493, respectively. (d),(e) and (f) show the mth order polynomial approximation ỹ
(m)
101 (t) of the trend of y101(t), the first order

short-term trend ỹ
(m,1)
101 (t), and the modified predictions ŷ

d(2,m)
101 (t) for m = 0, 1, 2.

of m may not be so important for this time series, while it
seems important for other some time series.

IV. CONCLUSION

We have described the method which we have used for
the time series forecasting competition. The method uses
the first-order difference for dealing with the seasonality of
the time series. We have developed a method to estimate
the trend of time series since the differencing neglects the
trend of the time series. We have shown the CAN2 for
learning efficient piecewise linear approximation of nonlinear
function, and the bagging of the CAN2 for reducing the
variance of the prediction by the single CAN2.
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