
 
 

 

  

Abstract—In this paper, a nonlinear autoregressive (NAR) 
recurrent neural network is used for the prediction of the next 
18 data samples of each time series in a set of 11 unknown 
dynamics in NN3 Database. The models are built on the 
reconstructed state spaces of data and no other domain 
knowledge is available to be used. Here, we clarify that the 
employed method is in part similar to a superior subclass of 
recurrent neural network, namely the nonlinear autoregressive 
model with exogenous inputs (NARX). Using the extensive 
available research about NARX networks, we briefly explain 
that our model is preferred to the both non-recursive and even 
other recurrent predictors, because of its intrinsic ability for 
learning long term dependencies in time series. As the desired 
values of the predicted time series are not available yet, no 
analysis have been performed on the presented results. 

I. INTRODUCTION 
N time series prediction, we wish to build a model that is 
responsible for generation of a given time series. 

However, when the underlying dynamics is affected by a set 
of explanatory variables, which are not known, the model 
that captures the dynamics cannot be identified directly. In 
these cases, a proper mapping of the observable output of the 
unknown dynamical system may be helpful for the prediction 
of the time series at hand. Identification of this mapping is 
discussed in the theory of dynamic reconstruction  [1]. Using 
the result of this theory the analysis, e.g. prediction, of the 
observable time series is possible. This is valuable if the 
evolution of the points in the reconstructed state space tracks 
that of the unknown dynamics in the original state space. 
Under some conditions, Takens delay-embedding theorem 
 [2] introduces a diffeomorphic map (one to one deferential 
mapping) as the result of dynamic reconstruction theory. 
According to this theory, with estimating two parameters of 
embedding dimension DE and normalized embedding delay 
τ, and constructing a predictive mapping, dynamic 
reconstruction is achieved. The reconstruction consists of 
two steps: first, a delay line should be designed to latch the 
information for DE points, and after that, a predictor that 
identifies the unknown mapping must be trained. This step is 
the heart of dynamic modeling. 

Various nonlinear predictors are employed for the time 
 

Manuscript received January 31, 2007. This work is supported in part by 
Sepanta Robotics & AI Research Foundation (SRRF). 

E. Safavieh, S. Andalib, and A. Andalib are with the SRRF, Tehran, 
15757-18616, Iran (e-mail: e.safavieh@srrf.net, s.andalib@srrf.net, 
a.andalib@ srrf.net). 

series prediction task, including regression- and neural 
network-based algorithms. A review on some common 
methods for prediction of a chaotic time series, namely 
electricity price is presented in our recent work  [3]. As it is 
described in  [3], in many time series there is a very important 
characteristics, which is known as long-term dependencies, 
meaning that the temporal contingencies presented in the 
input/out sequences span long intervals. We have shown 
in [3],  [4] that this is the case for financial time series and 
electricity price historical data.  

It is mentioned in  [5] that recurrent neural networks 
(RNNs) may be considered as a good choice for mapping 
input sequences to output sequences. In contrast, static 
systems, i.e. those with no recurrent connection, even if they 
include some lagged values of input data, have a finite 
impulse response and have difficulties with respect to RNN 
to store information for an indefinite time  [5]. However, 
even simple recurrent networks, e.g. Elman RNN, are not 
ideal approaches for learning long-term dependencies 
because of the problem of vanishing gradient, meaning that 
under special condition given in section II, the fraction of 
error gradient due to information n  time steps in the past 
exponentially decreases as n  increases. 

To tackle the problem of vanishing gradient, a class of 
recurrent neural networks, called nonlinear autoregressive 
model with exogenous inputs (NARX) is proposed  [6], 
which has various advantages over simple recurrent 
networks. Not only has the NARX model less sensitivity to 
long-term dependencies [6], but also it has a very good 
learning capability and generalization performance  [7]. 

It should be mentioned that NARX is different from a 
popular Auto Regressive (AR) model  [8] which performs a 
simple linear transformation of the visited values of the time 
series. As it is mentioned in section II, the NARX is a 
nonlinear model which estimates the next  values of the time 
series based on its last outputs instead of the actual 
measurements as is used in ARIMA models. Furthermore, 
the NARX uses a nonlinear structure, e.g. a neural network, 
for estimating the model's parameters. In contrast, the 
coefficients of a simple AR model are estimated using simple 
statistical methods like least squares estimation. Therefore, a 
NARX model enjoys a better generalization capability. 

In this paper, we introduce the NARX model to use the 
research history that proves the advantages of this model 
over static and even simple recurrent structures. However, 
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the time series that we are going to challenge in this paper 
are not multidimensional, in the sense that for each time 
series there is not any other explanatory data with values 
corresponding to the original one. Therefore, we are 
obligated to employ a simplified NARX network known as 
NAR. However, as the advantages of NARX are due to the 
feedback structure of this model, we are still interested in 
using a nonlinear autoregressive model without any 
exogenous inputs.  

In this paper, we have employed aforementioned NAR 
model to forecast a set of 11 time series from the dataset of 
NN3 forecasting competition. As a preprocessing step, we 
first calculate some characteristics of these time series based 
on Takens’ embedding theorem and the theory of dynamic 
reconstruction. The reconstructed state space is then used to 
generate 18-step ahead forecasts. 

This paper is organized as follows. In the next section, we 
briefly review the architecture of NAR in the framework of 
NARX recurrent neural network and enumerate its 
advantages over other recurrent structures. In section III, we 
review the Takens’ embedding theory. In section IV, we 
present the reconstructed dynamics of time series in NN3 
database. In section V, we implement the methods explained 
in section II regarding the reconstructed state space 
addressed in section IV. Finally, the numerical results are 
presented in section VI. 
 

II. NARX RECURRENT NEURAL NETWORK 
A NARX model is a class of discrete-time nonlinear 

autoregressive systems, which has endogenous inputs as well 
as exogenous inputs, and can be stated as: 
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here )}({ ty  is the time series of interest that should be 
predicted and )}({ tu  is another time series with terms 
associated with that of )}({ ty . The terms )(,),( uDtutu −L  
are the exogenous inputs and may be produced with an input 
delay line with memory of order uD . Similarly 

)(,),( yDtyty −L  are the endogenous inputs and may be 

produced with a delay line memory of order yD . f  is some 

nonlinear function, e.g. a multi layer perceptron (MLP), that 
estimates the next value of )}({ ty , )1(ˆ +ty  and tε  denotes 
the additive noise of the estimation. The architecture of a 
NARX recurrent neural network is shown in Fig. 1. The first 
layer of the MLP network consists of yu DD + buffer 

neurons, corresponding to the outputs of the two delay lines. 
Considering the above architecture, we define the cost 

function E  at the time t  as:  
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We may mathematically explain the effect of vanishing 

gradient on the derivatives of tE  with respect to the weight 
vector w : 
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It has been shown that if a network is to latch the 
information robustly, i.e. if it is to store information for a 
long period of time in the presence of noise, then for a term 
with υ << t , 0)(ˆ/)(ˆ →∂∂ υyty   [5]. In this condition, the 

gradient decays exponentially  [6], meaning that there is not 
any chance for the terms that are far from t  to change the 
weights in such a way that allow the network’s state to jump 
to a better basin of attraction. 

The above scenario comes true for all recurrent structures. 
However, one can postpone vanishing of gradient in NARX 
recurrent neural networks with increasing the number of 
delays in the output delay line of this architecture  [6]. As it 
may be seen in Fig. 1, the output delay line of NARX 
networks, as jump-ahead connections, provides shortcuts for 
propagating gradient information more efficiently when the 
network is unfolded in time. In an unfolded recurrent neural 
network, the hidden units from the pervious states are 
considered as an additional set of inputs. This property 
makes NARX a proper tool for modeling dynamics that 
exhibit long-term dependencies. 

As it is mentioned in section I, the NARX which is used in 
this paper does not have any exogenous inputs. 

 
Fig. 1.  A NARX recurrent neural network. 



 
 

 

III. EMBEDDING THEORY AND DYNAMIC RECONSTRUCTION 
By the results of Takens’ embedding theorem [9] and the 

theory of dynamic reconstruction [1], it is able to reconstruct 
the dynamics of interest, which were initially unobservable 
due to various, and maybe unknown parameters that effect 
on them. 

Takens’ theorem implies that by the means of two 
parameters of embedding dimension ED  and normalized 
embedding delay τ , it is guaranteed that the evolution of the 
points in the new state space follows that of the original state 
space. In this way the analysis, e.g. prediction of the new 
state space is fruitful. 

Suppose the time series )}({ ty  as the observable output of 
the unknown dynamical system )}({ tx ; )}({ ty  may be 
defined as follows: 

 ))(()( txgty =  (4) 

where )(⋅g  is a scalar-valued function. 
According to Takens’ theorem, we can define D -

dimensional reconstructed dynamics )}({ tRy  by the 
following equation:  
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where d  is the state space dimension of the unknown 
dynamics. 

As it is mentioned above, the evolution of the points 
)1()( +→ tt RR yy  tracks that of the unknown dynamics 

)1()( +→ txtx . So to challenge a problem concerned with 
the prediction of the time series )}({ tx , it is fruitful to predict 
the time series )}({ ty . This can be satisfied by a nonlinear 
model of 1: ℜ→ℜ Df , which performs the following 
mapping:  

 ))(()1(ˆ tfty Ry=+  (6) 

where )1(ˆ +ty  is the one-step ahead predicted value of the 
time series )}({ ty . 

Equation (6) may be extended to τ -step mapping with a 
different model of f : 

 ))(()(ˆ tfty Ry=+τ  (7) 

There are many methods for estimating the embedding 
parameters. One of the methods for choosing the embedding 
delay is to choose the first point of autocorrelation function 
that goes bellow zero zone [10]. In [11] it is selected as the 
reciprocal of the highest relevant frequency of the time 
series. It is proposed in [12] to use the information 
dimension, which is a kind of fractal dimensions, as the time 
delay. However, one of the most reliable methods is 
presented by Fraser [13]. Due to this method known as 
average mutual information (AMI), the normalized 
embedding delay τ  is heuristically set to the value in which 
the mutual information between )(ty  and )( τ−ty  attains its 

first minimum. This way, the values )(ty  and )( τ−ty  are 
essentially independent of each other in the sense that they 
may serve as two coordinates of the reconstructed space. 
However, they are not so independent as to have no 
correlation with each other. 

There are also some methods for choosing embedding 
dimension DE such as correlation dimension and the Integral 
Local Deformation (ILD) algorithm [14]. One of the best 
and simplest methods is presented in [15]. According to this 
method, the minimum acceptable value of D, denoted by 

ED , is determined by looking at the first local minimum of 
the false nearest neighbors (FNN) under changes in the 
embedding dimension from 1+→ DD .  

In the next section, we calculate the embedding 
parameters of NN3 time series. 

IV. RECONSTRUCTED DYNAMICS OF THE TIME SERIES IN 
NN3 DATABASE 

We have calculated the parameters of τ  and ED  for the set 
of 11 time series, including NN3-101 through NN3-111. It 
should be mentioned that due to the high nonstationarity of 
four time series, namely NN3-101, NN3-105, NN3-108 and 
NN3-109, first order differencing is used for detrending the 
raw data. By detrending, we mean eliminating the long-term 
trends of the signal, leaving only short-term oscillations. In 
fact, for these time series the reconstruction is performed on 
this secondary signal. Here, the normalized embedding delay 
is calculated by the autocorrelation function of each time 
series and the first point bellow zero zone is considered as 
the value of τ . Although, the method of average mutual 
information (AMI) is more reliable; however, it requires 
more historical data that is not available in our experiments. 
The embedding dimension is also calculated by the method 
of false nearest neighbors (FNN). We have depicted the 
autocorrelation and [15] FNN function for the time series 
NN3-106 in Fig. 2 and Fig. 3 respectively. The complete 
results for all of the time series in the database are reported 
in Table I. 

V. ALGORITHM IMPLEMENTATION 
To generate the prediction of the next 18 observation, 

NAR networks are used to model the functions f  defined in 
(7). The reconstructed state space of each data set is used 
here as the endogenous inputs. The reconstruction vectors 

)(tRy  defined by (5) is of dimension ED . Furthermore, the 
size of output delay line memory required to perform the 
embedding, is ED×τ . However, the delay line memory is 
only required to provide ED  outputs. Therefore, we use τ  
equally spaced taps, representing spars connections to the 
nonlinear structure of NAR. The embedding parameters as 
well as the nonlinear structures, which are used for different 
time series in NN3 database are mentioned in Table I. 

As the  training sets of the given  time series are extremely  



 
 

 

 
Fig.  2. The autocorrelation function of time series NN3-106. The first 

point bellow zero zone is considered as the value of normalized embedding 
delay.  

 
Fig.  3. The percentage of false nearest neighbors for data points of NN3-
106 time series. The location of the first minimum is reported as the 
minimum acceptable value of embedding dimension. 
 

TABLE I 
THE EMBEDDING VARIABLES, EMPLOYED ARCHITECTURES, AND PREDICTION RESULTS FOR THE 11 TIME SERIES 

 
 

TABLE II 
FORECASTS RESULTS FOR THE NEXT 18 DATA SAMPLES OF EACH TIME SERIES IN NN3 DATASET 

 
 



 
 

 

small, we have just considered 10% of each data set as 
validation data. The validation data in these experiments 
play a very important role. As the desired values of the time 
series are not available, to achieve the best results, we have 
trained many NAR networks in each case. Then, the network 
with the best performance over validation data is used to 
generate the forecasts for the next 18 data samples. 

VI. FORECASTING RESULTS 
The normalized mean square error (NMSE) values of the 

predictions are reported in Table I. Furthermore, the 
forecasted time series are presented in Table II. As the 
desired outputs of each network are not available yet, we 
have not been able to do any analysis on the results. 
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