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Abstract—In this paper, a nonlinear autoregressive (NAR)
recurrent neural network is used for the prediction of the next
18 data samples of each time series in a set of 11 unknown
dynamics in NN3 Database. The models are built on the
reconstructed state spaces of data and no other domain
knowledge is available to be used. Here, we clarify that the
employed method is in part similar to a superior subclass of
recurrent neural network, namely the nonlinear autoregressive
model with exogenous inputs (NARX). Using the extensive
available research about NARX networks, we briefly explain
that our model is preferred to the both non-recursive and even
other recurrent predictors, because of its intrinsic ability for
learning long term dependencies in time series. As the desired
values of the predicted time series are not available yet, no
analysis have been performed on the presented results.

I. INTRODUCTION

N time series prediction, we wish to build a model that is

responsible for generation of a given time series.
However, when the underlying dynamics is affected by a set
of explanatory variables, which are not known, the model
that captures the dynamics cannot be identified directly. In
these cases, a proper mapping of the observable output of the
unknown dynamical system may be helpful for the prediction
of the time series at hand. Identification of this mapping is
discussed in the theory of dynamic reconstruction [1]. Using
the result of this theory the analysis, e.g. prediction, of the
observable time series is possible. This is valuable if the
evolution of the points in the reconstructed state space tracks
that of the unknown dynamics in the original state space.
Under some conditions, Takens delay-embedding theorem
[2] introduces a diffeomorphic map (one to one deferential
mapping) as the result of dynamic reconstruction theory.
According to this theory, with estimating two parameters of
embedding dimension Dy and normalized embedding delay
7, and constructing a predictive mapping, dynamic
reconstruction is achieved. The reconstruction consists of
two steps: first, a delay line should be designed to latch the
information for Dy points, and after that, a predictor that
identifies the unknown mapping must be trained. This step is
the heart of dynamic modeling.

Various nonlinear predictors are employed for the time
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series prediction task, including regression- and neural
network-based algorithms. A review on some common
methods for prediction of a chaotic time series, namely
electricity price is presented in our recent work [3]. As it is
described in [3], in many time series there is a very important
characteristics, which is known as long-term dependencies,
meaning that the temporal contingencies presented in the
input/out sequences span long intervals. We have shown
in[3], [4] that this is the case for financial time series and
electricity price historical data.

It is mentioned in [5] that recurrent neural networks
(RNNs) may be considered as a good choice for mapping
input sequences to output sequences. In contrast, static
systems, i.e. those with no recurrent connection, even if they
include some lagged values of input data, have a finite
impulse response and have difficulties with respect to RNN
to store information for an indefinite time [5]. However,
even simple recurrent networks, e.g. Elman RNN, are not
ideal approaches for learning long-term dependencies
because of the problem of vanishing gradient, meaning that
under special condition given in section II, the fraction of
error gradient due to information n time steps in the past
exponentially decreases as n increases.

To tackle the problem of vanishing gradient, a class of
recurrent neural networks, called nonlinear autoregressive
model with exogenous inputs (NARX) is proposed [6],
which has various advantages over simple recurrent
networks. Not only has the NARX model less sensitivity to
long-term dependencies [6], but also it has a very good
learning capability and generalization performance [7].

It should be mentioned that NARX is different from a
popular Auto Regressive (AR) model [8] which performs a
simple linear transformation of the visited values of the time
series. As it is mentioned in section II, the NARX is a
nonlinear model which estimates the next values of the time
series based on its last outputs instead of the actual
measurements as is used in ARIMA models. Furthermore,
the NARX uses a nonlinear structure, e.g. a neural network,
for estimating the model's parameters. In contrast, the
coefficients of a simple AR model are estimated using simple
statistical methods like least squares estimation. Therefore, a
NARX model enjoys a better generalization capability.

In this paper, we introduce the NARX model to use the
research history that proves the advantages of this model
over static and even simple recurrent structures. However,
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the time series that we are going to challenge in this paper
are not multidimensional, in the sense that for each time
series there is not any other explanatory data with values
corresponding to the original one. Therefore, we are
obligated to employ a simplified NARX network known as
NAR. However, as the advantages of NARX are due to the
feedback structure of this model, we are still interested in
using a nonlinear autoregressive model without any
exogenous inputs.

In this paper, we have employed aforementioned NAR
model to forecast a set of 11 time series from the dataset of
NN3 forecasting competition. As a preprocessing step, we
first calculate some characteristics of these time series based
on Takens’ embedding theorem and the theory of dynamic
reconstruction. The reconstructed state space is then used to
generate 18-step ahead forecasts.

This paper is organized as follows. In the next section, we
briefly review the architecture of NAR in the framework of
NARX recurrent neural network and enumerate its
advantages over other recurrent structures. In section III, we
review the Takens’ embedding theory. In section IV, we
present the reconstructed dynamics of time series in NN3
database. In section V, we implement the methods explained
in section II regarding the reconstructed state space
addressed in section IV. Finally, the numerical results are
presented in section VI.

II. NARX RECURRENT NEURAL NETWORK

A NARX model is a class of discrete-time nonlinear
autoregressive systems, which has endogenous inputs as well
as exogenous inputs, and can be stated as:

i+ =f(y(@), -, y(t=D,),
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here {y(¢)} is the time series of interest that should be

(1

predicted and {u(f)} is another time series with terms
associated with that of {y(¢)}. The terms wu(¢),---,u(t —D,)

are the exogenous inputs and may be produced with an input
delay line with memory of order D, . Similarly

¥(t),-,y(t—D,) are the endogenous inputs and may be
produced with a delay line memory of order D . f is some

nonlinear function, e.g. a multi layer perceptron (MLP), that
estimates the next value of {y(¢)}, p(r+1) and g, denotes

the additive noise of the estimation. The architecture of a
NARX recurrent neural network is shown in Fig. 1. The first
layer of the MLP network consists of D + D, buffer

neurons, corresponding to the outputs of the two delay lines.
Considering the above architecture, we define the cost
function E at the time ¢ as:

E, =1/2(3(t) - y(1))° 2
We may mathematically explain the effect of vanishing
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It has been shown that if a network is to latch the
information robustly, i.e. if it is to store information for a
long period of time in the presence of noise, then for a term
with v<<¢, 8)3(1)/8)?(1))| —0 [5]. In this condition, the

gradient decays exponentially [6], meaning that there is not
any chance for the terms that are far from ¢ to change the
weights in such a way that allow the network’s state to jump
to a better basin of attraction.

The above scenario comes true for all recurrent structures.
However, one can postpone vanishing of gradient in NARX
recurrent neural networks with increasing the number of
delays in the output delay line of this architecture [6]. As it
may be seen in Fig. 1, the output delay line of NARX
networks, as jump-ahead connections, provides shortcuts for
propagating gradient information more efficiently when the
network is unfolded in time. In an unfolded recurrent neural
network, the hidden units from the pervious states are
considered as an additional set of inputs. This property
makes NARX a proper tool for modeling dynamics that
exhibit long-term dependencies.

As it is mentioned in section I, the NARX which is used in
this paper does not have any exogenous inputs.




III. EMBEDDING THEORY AND DYNAMIC RECONSTRUCTION

By the results of Takens’ embedding theorem [9] and the
theory of dynamic reconstruction [1], it is able to reconstruct
the dynamics of interest, which were initially unobservable
due to various, and maybe unknown parameters that effect
on them.

Takens’ theorem implies that by the means of two
parameters of embedding dimension D, and normalized

embedding delay 7 , it is guaranteed that the evolution of the
points in the new state space follows that of the original state
space. In this way the analysis, e.g. prediction of the new
state space is fruitful.

Suppose the time series {y(¢)} as the observable output of
the unknown dynamical system {x(¢)}; {y(f)} may be

defined as follows:

y(1) = g(x(1)) “4)

where g(-) is a scalar-valued function.

According to Takens’ theorem, we can define D-

dimensional ~reconstructed dynamics {y,(z)} by the
following equation:
YR(t):[)’(t),J’(t_T),---,)”(t_(D_l)f], (5)
D=>2d+1
where 4 is the state space dimension of the unknown

dynamics.
As it is mentioned above, the evolution of the points
Vo(6) > yp(t+1) tracks that of the unknown dynamics

x(t) = x(t+1). So to challenge a problem concerned with
the prediction of the time series {x(¢)}, it is fruitful to predict
the time series {y(¢)}. This can be satisfied by a nonlinear

model of f:M” » R', which performs the following
mapping:

Y+ =1y () ©
where j(¢+1) is the one-step ahead predicted value of the
time series {y(f)}.

Equation (6) may be extended to 7 -step mapping with a
different model of f:

W(t+7)=f(yx(1) )
There are many methods for estimating the embedding
parameters. One of the methods for choosing the embedding
delay is to choose the first point of autocorrelation function
that goes bellow zero zone [10]. In [11] it is selected as the
reciprocal of the highest relevant frequency of the time
series. It is proposed in [12] to use the information
dimension, which is a kind of fractal dimensions, as the time
delay. However, one of the most reliable methods is
presented by Fraser [13]. Due to this method known as
average mutual information (AMI), the normalized
embedding delay 7 is heuristically set to the value in which
the mutual information between y(¢) and y(z —7) attains its

first minimum. This way, the values y(r) and y(z—71) are
essentially independent of each other in the sense that they
may serve as two coordinates of the reconstructed space.
However, they are not so independent as to have no
correlation with each other.

There are also some methods for choosing embedding
dimension Dy such as correlation dimension and the Integral
Local Deformation (ILD) algorithm [14]. One of the best
and simplest methods is presented in [15]. According to this
method, the minimum acceptable value of D, denoted by
D, , is determined by looking at the first local minimum of

the false nearest neighbors (FNN) under changes in the
embedding dimension from D — D +1.

In the next section, we calculate the embedding
parameters of NN3 time series.

IV. RECONSTRUCTED DYNAMICS OF THE TIME SERIES IN
NN3 DATABASE

We have calculated the parameters of 7 and D, for the set

of 11 time series, including NN3-101 through NN3-111. It
should be mentioned that due to the high nonstationarity of
four time series, namely NN3-101, NN3-105, NN3-108 and
NN3-109, first order differencing is used for detrending the
raw data. By detrending, we mean eliminating the long-term
trends of the signal, leaving only short-term oscillations. In
fact, for these time series the reconstruction is performed on
this secondary signal. Here, the normalized embedding delay
is calculated by the autocorrelation function of each time
series and the first point bellow zero zone is considered as
the value of r . Although, the method of average mutual
information (AMI) is more reliable; however, it requires
more historical data that is not available in our experiments.
The embedding dimension is also calculated by the method
of false nearest neighbors (FNN). We have depicted the
autocorrelation and[15] FNN function for the time series
NN3-106 in Fig. 2 and Fig. 3 respectively. The complete
results for all of the time series in the database are reported
in Table L.

V. ALGORITHM IMPLEMENTATION

To generate the prediction of the next 18 observation,
NAR networks are used to model the functions f* defined in

(7). The reconstructed state space of each data set is used
here as the endogenous inputs. The reconstruction vectors
y(¢) defined by (5) is of dimension D, . Furthermore, the

size of output delay line memory required to perform the
embedding, is 7 x D,. However, the delay line memory is

only required to provide D, outputs. Therefore, we use 1

equally spaced taps, representing spars connections to the
nonlinear structure of NAR. The embedding parameters as
well as the nonlinear structures, which are used for different
time series in NN3 database are mentioned in Table 1.

As the training sets of the given time series are extremely
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Fig. 2. The autocorrelation function of time series NN3-106. The first Fig. 3. The percentage of false nearest neighbors for data points of NN3-
point bellow zero zone is considered as the value of normalized embedding 106 time series. The location of the first minimum is reported as the

delay. minimum acceptable value of embedding dimension.
TABLE 1
THE EMBEDDING VARIABLES, EMPLOYED ARCHITECTURES, AND PREDICTION RESULTS FOR THE 11 TIME SERIES
Time Series 7 Dy Network  TrainXNMsE  Tidaton
NN3-101 3 4 [De3 51] 0.049531 0.077242
NN3-102 6 4 [De51] 0.042137 0.119053
NN3-103 6 8 [De621] 0.058877 0.94272
NN3-104 6 4 [De531] 0.002938 0.025725
NN3-105 3 3 [De51] 0.130188 1.686444
NN3-106 4 5 [De531] 0.016508 0.299395
NN3-107 4 4 [De261] 0.015089 0.851522
NN3-108 3 3 [De621] 0.426625 1.732382
NN3-109 4 6 [De51] 0.181523 1.388405
NN3-110 5 3 [De5 1] 0.052671 0.055022
NN3-111 3 3 [De3 1] 0.114562 10.92656
TABLE II

FORECASTS RESULTS FOR THE NEXT 18 DATA SAMPLES OF EACH TIME SERIES IN NN3 DATASET
Time Series# 101 102 103 104 105 106 107 108 109 110 111

t+1 6236 4074 39563 7441 4630 4765 3782 2237 3690 2773 3164
t+2 5246 9107 39163 7400 4731 6311 3767 2837 3734 2613 3613
t+3 5040 9099 39350 7287 4827 4777 3703 3026 3702 2546 2404
t+4 5219 9042 32050 6925 4809 4431 3640 3423 3816 2494 3114
t+5 5007 8945 13489 6910 4861 4368 3708 30686 3894 2539 3138
t+6 5185 8744 4586 3438 5015 4673 3804 3195 3901 2121 2521
t+7 5067 8440 4127 3079 4974 4305 3763 4285 3804 2341 2496
t+8 4847 7967 3928 3630 4962 4476 3804 3343 3968 2650 2333
t+9 5261 75680 3921 6571 5117 6284 3777 3368 3914 2711 3163
t+10 5037 7219 4251 7175 5092 4190 3760 3710 3877 2667 2507
t+11 5109 6848 4552 7231 5044 65379 3795 3398 3927 3038 2591
t+12 5036 6282 4111 7408 5125 5172 3821 3419 3965 2839 2854
t+13 5146 5732 4099 7400 5133 4771 3786 3146 3946 2575 3076
t+14 5116 9078 36065 7410 5084 6403 3759 3562 3988 2541 3180
t+15 4923 9114 36168 7315 5082 4771 3769 3637 4147 2663 2427
t+16 5139 9118 31001 7146 5129 4799 3772 3043 4109 2492 2859

t+17 4922 9099 7046 7028 5116 4443 3759 3783 4209 2501 2817
t+18 5076 9041 4151 3702 5048 4747 3775 3927 4322 2615 2776




small, we have just considered 10% of each data set as
validation data. The validation data in these experiments
play a very important role. As the desired values of the time
series are not available, to achieve the best results, we have
trained many NAR networks in each case. Then, the network
with the best performance over validation data is used to
generate the forecasts for the next 18 data samples.

VI. FORECASTING RESULTS

The normalized mean square error (NMSE) values of the
predictions are reported in Table I. Furthermore, the
forecasted time series are presented in Table II. As the
desired outputs of each network are not available yet, we
have not been able to do any analysis on the results.
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