
Growing fuzzy inference neural network applied to the NN3 neural
forecasting competition

Jiřı́ Iša

Abstract—Growing fuzzy inference neural system (GFINN)
is a fuzzy–neural network model. Its functionality can be
expressed in a form of fuzzy if–then rules. The skill of the
GFINN model to grow allows it to change its size and structure
according to the training data. The resulting structure allows
for a simple input features selection — not all input features
have to be used in every fuzzy rule. The new algorithm for
the computation of output weights runs much faster than
least mean squares estimate, while the experiments performed
in past show nearly identical performace of both methods.
Furthermore, the new training method guarantees the output
weights to remain inside the output values interval. This
makes the extracted rules reasonable, unlike with least mean
squares estimate. This text describes the GFINN model and its
application to the NN3 neural forecasting competition.

I. INTRODUCTION

In past, artificial neural networks have been successfully
deployed in many domains. Their usage may become even
more widespread, if their functionality becomes more trans-
parent. For most neural models, their functionality is a black
box. Nobody knows, how the network works, or why it does
not. Fuzzy neural networks offer a possibility to express its
own functionality in a form of human–readable fuzzy if–
then rules. A human expert can verify, whether the obtained
fuzzy rules seem reasonable. If they do not, the network
parameters can be changed to reflect the problem. Having
this extra requirement, to discover the fuzzy rules, in mind,
the fuzzy neural network training may become more complex
than a more traditional approach. This text introduces the
Growing fuzzy inference neural model and applies it to the
NN3 competition task.

II. GROWING FUZZY INFERENCE NEURAL NETWORK

The growing fuzzy inference neural network model
(GFINN) has been developed by the author of this text [1],
because the existing fuzzy neural models [2], [3] represent
a very constraining top–restricted approach — the number
of fuzzy rules is pre–specified. In some models the obtained
rules can get pruned or merged, but it is never automatically
recognized, that the task may be too complex for the given
size of the network. The Growing neural gas model (GNG)
[4], [5] offers a way out of these troubles. For the purpose of
the GFINN model, the lifelong tendency of GNG to grow was
extended by the ability to recognize the useless neurons and
remove them from the network structure. The experiments
performed so far have shown that the GFINN size stabilizes
after a small amount of training cycles.

Jiřı́ Iša is a student of Faculty of Mathematics and Physics at Charles
University in Prague, Czech Republic; e–mail: jiri dot isa at matfyz dot cz

A. Structure of the network

GFINN is essentially a RBF–like neural network. It consist
of an input layer, a self–organizing hidden layer and an
output layer. The neurons in the input layer represent the
input of the network. Every neuron ni in the hidden layer
has an attached reference vector −→mi ∈ <n, where n is the
input space dimensionality. Every hidden neuron ni also
has an attached variable errori used during training. In the
single–output version of the network used in this text, the
output neuron uses weights −→w = {w1, . . . , wk}, wi ∈ <
corresponding to the connection to one of the k hidden
neurons, to compute the network output y.

B. Recall

• Set the outputs of the input neurons to the values of the
input pattern −→x ∈ <n.

• Calculate the hidden layers activation according to:

ai(−→x) = e−
‖−→x −−→mi‖

2

2σ2

where the width σ is a parameter of the network.
• Calculate the normalized activation of the neurons in

the hidden layer:

νi(−→x) =
ai(−→x)∑k

j=1 aj(−→x)

• Compute the output of the network using the weighted
average defuzzification:

y(−→x) =
k∑

j=1

νjwj

C. Training

Such as it is common for RBF networks, the training
consists of several consequent phases. The hidden layer
is trained using self–organization and the output weights
are trained independently. To improve the reference vectors
of the hidden neurons with regards to the output, GFINN
interleaves these to steps repeatedly. GFINN also adds the
selection of the significant input features to the process.

The training algorithm skeleton is:
• Perform the self–organization step of the hidden layer

for all training patterns −→x .
• Use the training patterns and the current configuration

of the hidden layer for the output weights adaptation and
to obtain local error estimates errori used in the self–
organization.

• If the stop condition has no been met yet (fixed amount
of cycles, stable network size, training error threshold
achieved, . . .), repeat from the first step.

• Perform the significant input features selection.
1) Self–organization of the hidden layer: Because there

is no need for a low–level visualization of input patterns,
GFINN uses a much more loose structure than the standard
regular Kohonen’s neural grids are [6] — the Growing neural
gas [4], [5] (GNG). GNG is designed to grow infinitely, or
for a fixed amount of training cycles. For the purpose of
GFINN we have extended it with the removal of insignificant
neurons. A neuron ni is considered ε–insignificant if:

∀nj ∈ neighbors(ni) : |wi − wj | ≤ ε

If an ε–insignificant neuron ni is removed from the network,
its activity is, due to the locality of the activation of the
neurons, overtaken by its neighbors with almost identical
influence on the network output. ε–insignificant neurons
should be removed every few learning cycles, the same way
the new neurons are added in the basic training algorithm
[4].

We also suggest to use a modified learning rule for the
adaptation of the hidden layer reference vector [1]:

−→mi(t + 1) = −→mi(t) + α(t)|1− (wi − ŷ(−→x))|[−→x −−→mi(t)]

t is a discrete time step, α(t) a learning rate in time t. The
|1− (wi− ŷ(−→x))| item is added to reduce the attraction of a
neuron ni, if the requested output ŷ(−→x) is very different from
the rule, which this neurons represents (with a consequent
wi).

2) Fuzzy–optimal output weights computation (FOPT):
Two methods used to obtain the output weights are widely
used for RBF networks: gradient descent and least mean
squares estimate (LMSE). It has been observed [1] that
a) it is difficult to make the gradient descent react to the
changes of the underlying hidden layer structure while not
overfitting, b) LMSE is computationally expensive and can
suggest output weights (rule consequents) outside of the
output values interval.

We suggest to use a local error function instead of the
standard sum of network error squares. This new error func-
tion reflects fuzzy error appearing on every hidden neuron
ni:

EFOPT
i =

1
2

∑
(−→x ,ŷ)∈T

νi(−→x)(ŷ − wi)2

where T is a training set consisting of input–output training
pairs (−→x , ŷ).

Then the partial derivative of EFOPT
i with respect to wi

can be computed easily:

∂EFOPT
i

∂wi
= −

∑
(−→x ,ŷ)∈T

νk(−→x)(ŷ − wi)

Requiring this partial derivative ∂EF OP T
i

∂wi
to equal to zero,

we can conclude with the following equation to determine

wi:

wi =
1∑

(−→x ,ŷ)∈T

νi(−→x)

∑
(−→x ,ŷ)∈T

νi(−→x)ŷ

From this formula, it can be seen, that it may be feasible
to use weighted averages of the output values of the training
patterns as the output weights.

The resulting scheme differs in effect from the standard
computations of output weights, because a different error
function is used. The local fuzzy error functions EFOPT

k

do not have the global impact of the global error function.
Due to the weighted average output computation, the GFINN
model can also be considered to represent a voting scheme,
where every voter (hidden neuron) also estimates its own
vote strength and specializes itself for a subset of the input
space.

3) Significant input features selection: One of the great
benefits of the GFINN representation is, that it supports a
straightforward method for the selection of significant input
features. As a consequence, the induced rules do not have
to use all the input features. The features they actually use
may vary for different rules.

The locality of the gaussian activation allows to determine
a set of test patterns, which can be used to measure a
relevancy of an input feature for a hidden neuron [1].

D. Rules extraction

Every hidden neuron ni corresponds to a fuzzy rule [7]:

If −→x = −→mi Then y = wi

Because of the input features selection, the general rule
may become smaller:

If xf1 = mf1 ∧ . . . xfp
= mfp

Then y = wi

where f1, . . . , fp are the selected input features for the
respective rule.

III. APPLICATION TO THE NN3 NEURAL FORECASTING
COMPETITION

A. Data preprocessing and postprocessing

For simplicity, a floating window of twelve last values is
used as an input of the network, which predicts the next
value. The modified learning rule assumes the input values
to be normalized to the 〈0, 1〉 interval:

x′ =
x− xmin

xmax − xmin

with xmin and xmax being extreme values of the input
feature x in the training set.

To obtain the predicted value, the network output is
denormalized using ŷmin and ŷmax as the normalization
boundaries.

Fig. 1. Illustrational network growth for one of the series.

B. Network configuration and training
A new neuron is added to the network after every third

pass through the training set. In the same time 0.001–
insignificant neurons are pruned.

Figure 1 shows an illustrational growth of the GFINN
network for one of the predicted series.

For every series in the competition a new network is
trained, using the same parameters. The network grows by
itself as neccessary for the given task. The whole known time
series is used as a training set.

C. Far future forecast
The network is configured and trained to forecast a single

value. Eighteen future values are requested for every series in
the NN3 competition. The designed GFINN model predicts
the values one–by–one. The newly predicted value is used
as the last variable in the input pattern used for the next
prediction (Fig. 2).

Fig. 2. Illustrational network prediction.

REFERENCES

[1] J. Iša, “Artificial neural networks for clustering and rule extraction,”
Master thesis, Faculty of Mathematics and Physics, Charles university
in Prague, Czech Republic, 2007.

[2] T. Nishina and M. Hagiwara, “Fuzzy inference neural network,” Neural
Computing, vol. 14, no. 3, pp. 223–239, 1997.

[3] J.-S. R. Jang, “ANFIS: Adaptive–network–based fuzzy inference sys-
tem,” IEEE Transactions on Systems, Man & Cybernetics, vol. 23, pp.
665–685, 1993.

[4] B. Fritzke, “A growing neural gas network learns topologies,” in
Advances in Neural Information Processing Systems 7, G. Tesauro, D. S.
Touretzky, and T. K. Leen, Eds. Cambridge MA: MIT Press, 1995, pp.
625–632. [Online]. Available: citeseer.ist.psu.edu/fritzke95growing.html

[5] M. Martinetz and K. J. Schulten, “A ”neural–gas” network learns
topologies,” in Proceedings of International Conference on Articial
Neural Networks, O. S. T. Kohonen, K. Mkisara and E. J. Kangas,
Eds., vol. 1, 1991, pp. 397–402.

[6] T. Kohonen, Self–organizing maps, Third extended edition. Springer,
2001.

[7] J.-S. R. Jang and C.-T. Sun, “Functional equivalence between radial ba-
sis function networks and fuzzy inference systems,” IEEE Transactions
on Neural Networks, vol. 4, pp. 156–159, 1993.

