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Abstract— A new methodology for forecasting time series
which is based on combination of two techniques: fuzzy trans-
form and perception-based logical deduction is proposed.

I. INTRODUCTION

We propose a new methodology for forecasting time
series which is based on combination of two techniques:
fuzzy transform and perception-based logical deduction. The
technique of fuzzy transforms has been introduced in [8] and
then elaborated in e.g., [6], [7]. The computation technique
based on logical deductions is presented in [2], [5].

The proposed methodology consists of two phases: anal-
ysis of a time series and its forecast. In the first phase, a
time series is decomposed into two components, namely its
trend and residua. The trend is represented either by a vector
of fuzzy transform components, or by the inverse fuzzy
transform (see below). By the residuum we understand the
difference between the original and the corresponding trend
value of the time series.

In the second phase, both trend as well as residua are
forecast and then put together. We use one of three possibil-
ities: second order fuzzy transform, extrapolation of the in-
verse fuzzy transform, or perception-based logical deduction.
Forecast of the residua is obtained by a linear combination of
previous residua using optimization. A number of parameters
are involved in this methodology. They are obtained by
training. The best combination of parameters is taken for the
final forecast. We outline the technique of fuzzy transform
in Section II and the technique of perception-based logical
deduction in Section III. The time-series forecasting method
is presented in Section III.

II. PRELIMINARIES. FUZZY (F)-TRANSFORM

In this section, we will briefly describe the main theoretical
tools that have been used in the proposing time series analysis
and forecast.

The fuzzy transform (F-transform) has been introduced in
[8] for continuous functions and later extended to functions
defined at finite set of points [6], [7]. In that case, we called
it the discrete fuzzy transform. For the time-series analysis
we need the discrete fuzzy transform only and so, we will
omit the adjective “discrete” in the sequel.

We will use the ordinary algebra of reals and fix an interval
[a, b] and a linear space Vl of functions defined on [a, b] at
fixed points p1, . . . , pl ∈ [a, b], l ≥ 3. For these functions we
will define the direct and inverse fuzzy transform with respect
to a fuzzy partition of [a, b]. The direct fuzzy transform of a
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function from Vl is its homomorphic image in the space of
n-dimensional vectors, n < l. The inverse F-transform (given
by the inversion formula), converts an n-dimensional vector
into a function from Vl which approximates the original one.

A. Fuzzy partition of [a, b]
The fuzzy transform of a function from Vl is defined with

respect to a fuzzy partition of its domain, i.e. the interval
[a, b]. The details are presented below.

Fuzzy sets on [a, b] are identified with their membership
functions, i.e., they are mappings from [a, b] into [0, 1]. If A
is a fuzzy set on [a, b] then we write A ⊂∼ [a, b].

Definition 1
Let x1 < . . . < xn be fixed nodes within [a, b], such that x1 =
a, xn = b and n ≥ 2. We say that fuzzy sets A1, . . . , An,
identified with their membership functions A1(x), . . . , An(x)
defined on [a, b], constitute a fuzzy partition of [a, b] if they
fulfill the following conditions for k = 1, . . . , n:

1) Ak : [a, b] −→ [0, 1], Ak(xk) = 1;
2) Ak(x) = 0 if x 6∈ (xk−1, xk+1) where for the uniformity

of denotation, we put x0 = a and xn+1 = b;
3) Ak(x) is continuous;
4) Ak(x), k = 2, . . . , n, strictly increases on [xk−1, xk] and

Ak(x), k = 1, . . . , n−1, strictly decreases on [xk, xk+1];
5) for all x ∈ [a, b]

n∑

k=1

Ak(x) = 1. (1)

The membership functions A1, . . . , An are called basic func-
tions.

Let us remark that basic functions are specified by a set of
nodes x1 < . . . < xn and the properties 1)–5). The shape of
basic functions is not predetermined and therefore, it can be
chosen additionally according to further requirements (e.g.
smoothness).

The following formulas represent a fuzzy partition of
[x1, xn] given by n triangular membership functions:

A1(x) =

{
1− (x−x1)

h1
, x ∈ [x1, x2],

0, otherwise,

Ak(x) =





(x−xk−1)
hk−1

, x ∈ [xk−1, xk],

1− (x−xk)
hk

, x ∈ [xk, xk+1],
0, otherwise,

An(x) =

{
(x−xn−1)

hn−1
, x ∈ [xn−1, xn],

0, otherwise.

where k = 1, . . . n− 1, and hk = xk+1 − xk.



B. Fuzzy Transform

Let [a, b] be the fixed universe, x1 < . . . < xn fixed nodes
and p1, . . . , pl fixed points from [a, b], such that n ≥ 2, l > n
and x1 = a, xn = b. Let A1, . . . , An be fixed basic functions
which constitute a fuzzy partition of [a, b]. We assume that
the set Pl = {p1, . . . , pl} is sufficiently dense with respect to
the partition, i.e.

(∀k)(∃j) Ak(pj) > 0. (2)

Let us consider the space Vl of real valued functions
defined on the set Pl, i.e.

Vl = {f : Pl −→ R}.
If for each f ∈ Vl we denote fj = f(pj), j = 1, . . . , l, then
Vl can be identified with the set of all l-dimensional vectors
with real components. The (discrete) F-transform of f ∈ Vl

is introduced as follows.

Definition 2
Let f ∈ Vl be given and A1, . . . , An, n < l, be fixed
basic functions. We say that the n-tuple of real num-
bers [F1, . . . , Fn] is the F-transform of f with respect to
A1, . . . , An if

Fk =

∑l
j=1 f(pj)Ak(pj)∑l

j=1 Ak(pj)
. (3)

The F-transform of f with respect to A1, . . . , An will be
denoted by Fn[f ] = [F1, . . . , Fn]. It has been proved in
[7] that the components of the F-transform are the weighted
mean values of an original function where the weights are
given by the basic functions.

The original function f can be approximately recon-
structed (with the help of the inversion formula) from its
fuzzy transform Fn[f ]. The function represented by the
inversion formula is called the inverse F-transform. We
consider the inverse F-transform at the same points where
the original function is given.

Definition 3
Let function f ∈ Vl be given and Fn[f ] = [F1, . . . , Fn] be
the F-transform of f with respect to A1, . . . , An. Then the
function

fF,n(pj) =
n∑

k=1

FkAk(pj), j = 1, . . . , l, (4)

defined on the same set Pl, is the inverse discrete F-transform.

III. MAIN RESULTS

A. Analysis of Time Series with the Help of the Fuzzy
Transform

Assume that yt, t = 1, . . . , T , T ≥ 3, is a time series.
We can consider it as a function which is defined on the
set PT = {1, . . . , T} and which belongs to the space VT .
Let A1, . . . , An, n < T , be triangular basic functions which
constitute a fuzzy partition of the interval [1, T ] such that
the set PT is sufficiently dense with respect to A1, . . . , An.

Denote Pi, i = 1, . . . , n, a subset of PT consisting of points
“covered” by Ai, i.e.t ∈ Pi iff Ai(t) > 0. Note that each
Pi is not empty.

Denote Fn[y] = [Y1, . . . , Yn] the F-transform of yt with
respect to A1, . . . , An. Then {yt − Yi | t ∈ Pi} is the i-th
residuum of yt with respect to Ai, i = 1, . . . , n. For t =
1, . . . , T , i = 1, . . . , n we denote

rti =

{
yt − Yi, if t ∈ Pi,

−∞, otherwise

so that RT×n = (rti) is the matrix of residua. It is easy to
see that yt can be reconstructed from its F-transform Fn[y]
and the matrix of residua R:

yt =
n∨

i=1

(Yi + rti). (5)

B. Forecasting a Time Series

To forecast a time series we will use its representation (5)
and separately forecast the next component Yn+1 of the F-
transform (of yt) and a respective residuum. From now on
we will explicitly refer to the time series which have been
chosen for the competition. We assume that a fuzzy partition
A1, . . . , An of the time interval {1, . . . , T} is uniform and
moreover, n is such that each Ai, i = 2, . . . , n − 1, covers
12 points corresponding to one year and h = 6. These points
constitute the set Pi. Let us extend the set PT by new points
T + 1, . . . , T + 12 so that they constitute the new set Pn+1.
Let us also extend the fuzzy partition A1, . . . , An by the new
basic function An+1 which covers Pn+1.

We will consider two methods for the forecast of the Yn+1-
th component: the F-transform of the second order and a
logical deduction. Then we will consider the method for the
forecasting a new residua with respect to the new Yn+1-th
component. We will create possible combinations and train
them on the last (one-year long) part of yt. Then we choose
the best combination and use it for the forecast.

C. Forecast an F-Transform Component by the F-transform
of the second order

In this subsection we explain the first method of the
forecasting the Yn+1-th component of the F-transform (of
yt).

The F-transform will be applied to the vector Fn[y] =
[Y1, . . . , Yn] which we consider as a function from the space
Vn and which is defined on the set Pn = {1, . . . , n}. We will
choose another basic functions B1, . . . , Bs, s < n, which
constitute a fuzzy partition of the interval [1, n] such that the
set Pn is sufficiently dense with respect to B1, . . . , Bs. The
F-transform of the second order of yt is the vector F2

s[y] =
[Y 2

1 , . . . , Y 2
s ] of the F-transform components of Fn[y] with

respect to B1, . . . , Bs. Analogous to the above, we define
the matrix of residua so that the Fn[y] can be reconstructed
similar to the reconstruction of yt expressed in (5). Thus, to
forecast the next component Yn+1 we will forecast the next
component Y 2

s+1 of the F-transform of the second order and
a respective residuum.



To forecast Y 2
s+1 we will extrapolate the linear model using

the least square method based on the preceding components
Y 2

1 , . . . , Y 2
s .

The forecast of the respective residua will be discussed in
Subsection III-E.

D. Forecasting F-transform components from linguistic de-
scription

In this subsection, we will briefly describe the second
method of the forecasting the Yn+1-th component of the F-
transform (of yt).

Let Fn[y] = [Y1, . . . , Yn] be the F-transform of yt as
described in Subsection III-A. We can view Fn[y] as a new
time series and forecast it using a perception-based logical
deduction. The procedure is based on a linguistic description
which characterizes its behavior.

The considered linguistic description is a set of fuzzy IF-
THEN rules of the form

IF Y1 is A11 AND · · · AND Yq is A1q

THEN Yq+1 is B1

IF Y2 is A21 AND · · · AND Yq+1 is A2q

THEN Yq+2 is B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)
IF Yn−q is Am1 AND · · · AND Yn−1 is Amq

THEN Yn is Bm

where m = n − q and A11, . . . ,Amq are specific linguistic
expressions of the form

〈linguistic hedge〉{small, medium, big}.
The linguistic hedge is, e.g., very, extremely, roughly, more
or less, etc. These expressions have a specific semantics that
has been in detail described in [3]. Let us stress that the
rules in (6) are taken as genuine conditional expressions of
natural language that are interpreted accordingly — see [4].
Each rule in (6) thus linguistically expresses that the value
of the component Yq+j , j = 1, . . . , n − q is determined by
certain values of the previous q components Yj , . . . , Yj+q−1.

We have implemented a learning method (see [1]) that can
learn of linguistic expressions A11, . . . ,Amq from values of
the components Fn[y]. The number q is a free parameter that
has to be determined during leaning.

After the learning, the forecasting of the new value Yn+1 is
done from the previous q components Yn−q+1, . . . , Yn using
the method called perception-based logical deduction that
has been described in details in [2], [5]. Roughly speaking,
this method chooses and fires the rule whose antecedent
(IF part) gives the best linguistic characterization of the
values Yn−q+1, . . . , Yn. The final result of this deduction
is the best linguistic characterization of Yn+1 which can be
represented by a fuzzy set having a specific shape. The latter
is defuzzified by the method called DEE (Defuzzification of
Evaluating Expressions). The result of the defuzzification is
the desired value of Yn+1.

E. Forecast a Residua

We will explain how the matrix of residua RT×n = (rti),
introduced in Subsection III-A, can be extended by the (n+
1)-th column. The latter is actually the desired forecast of
residua.

By the agreement on a fuzzy partition, each set Pi,
i = 2, . . . , n − 1, contains 12 points which will be de-
noted by t1,i, . . . , t12,i. Then, each vector of residua ri =
(r1i, . . . , rTi), i = 2, . . . , n − 1, contains 12 components
which are different from −∞ and are represented by yt −
Yi, if t ∈ Pi, . Let they constitute the subvector r̂i =
(r̂1,i, . . . , r̂12,i). It is easy to see that

∑12
j=1(r̂j,iAi(tj,i))∑12

j=1 Ai(tj,i)
= 0

so that r̂i, i = 2, . . . , n − 1, is the sequence of random
variables with the distribution functions Ai(tj,i)∑12

j=1 Ai(tj,i)
and the

zero expected values.
A new vector of residua r̂n+1 should contain a subvector

with 12 components such that they constitute a random
variable with a distribution function determined by An+1

and the zero expected value. Let us explain how new 12
components (r̂1,n+1, . . . , r̂12,n+1) of r̂n+1 can be forecasted.

We assume that the sequence r̂i, i = 2, . . . , n + 1 is
stationary so that each k+1-th vector is a linear combination
of the k preceding ones where k < n in an unknown pa-
rameter. Coefficients of the linear combination can be found
by solving the respective system of linear equations. Having
coefficients, the new 12 components (r̂1,n+1, . . . , r̂12,n+1) of
r̂n+1 can be easily computed. The value of k can be found
by comparison a forecasted series with the original one on
the last (one-year long) part of yt. The value of k which
gives the best possible absolute difference is chosen.

F. Forecasting Procedure

Let yt, t = 1, . . . , T , T ≥ 3, be a given time series. We
divide it into two parts yf

t , t = 1, . . . , T − 12 and yl
t, t =

T − 11, . . . , T and use yl
t to train parameters. Let us choose

initial values of parameters s, k1, k2. Then we proceed as
follows.

- The first part yf
t is analyzed with the help of the F-

transform (Subsection III-A) so that the components
[Y1, . . . , Yn−1] of yf

t with respect to A1, . . . , An−1

and their respective residua ri = (r1i, . . . , rTi), i =
1, . . . , n− 1, are to be computed.

- The components [Y1, . . . , Yn−1] are analyzed in the
same way as above with the help of the F-transform
of the second order. The latter results in the vector of
components F2

s[y] = [Y 2
1 , . . . , Y 2

s ] and their residua
which are obtained with respect to basic functions
B1, . . . , Bs.

- We forecast the next component Y 2
s+1 either by an

extrapolation of the linear model (Subsection III-C) or
by a logical deduction (Subsection III-D).



- We forecast the s + 1-th vector of residua (with respect
to the basic function Bs+1) by a linear combination of
k1 preceding residua vectors (Subsection III-E).

- By (5), we compute the component Yn of the F-
transform yf

t with respect to An.
- We compute the n-th vector of residua rn (with respect

to the basic function An) by a linear combination of k2

preceding residua vectors.
- By (5), we compute the components of the second part

yl
t of the original time series yt.

For each possible combination of parameters s, k1, k2

we apply the described above procedure and obtain (by
the computation) the respective components of the second
part yl

t. Then the triple of parameters which gives the best
possible absolute difference between the computed and the
actual series yl

t is chosen. The chosen parameters are then
used for the forecast of the original time series yt. The
forecast is obtained using the procedure described above
where yf

t is replaced by yt.

IV. CONCLUSIONS

The proposed methodology for forecasting time series is
based on combination of two techniques: fuzzy transform and
perception-based logical deduction. It consists of two phases:
analysis of a time series and its forecast. In the first phase, a
time series is decomposed into two components: a trend and
residua. The trend is represented either by a vector of fuzzy
transform components, or by the inverse fuzzy transform.
The residuum is the difference between the original and the
corresponding trend value of the time series.

In the second phase, both trend as well as residua are
forecast and then put together. We use one of three possibil-
ities: second order fuzzy transform, extrapolation of the in-
verse fuzzy transform, or perception-based logical deduction.
Forecast of the residua is obtained by a linear combination of
previous residua using optimization. A number of parameters
are involved in this methodology. They are obtained by
training. The best combination of parameters is taken for
the final forecast.
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