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Abstract— Rapidly evolving businesses generate massive establish the regression-based description of the fukness
amounts of time-stamped data sequences and defy a demand pased on the historical data series. More recently a number
for massively multivariate time series analysis. For such dta ¢ achine learning techniques started to be applied to time
the predictive engine shifts from the historical auto-regession . . .
to modelling complex non-linear relationships between mui- sene_s foreca_stlng and on a number of 0(_:(_:a3|0ns_showed
dimensional features and the time series outputs. In orderad ~ considerable improvement compared to traditional regyess
exploit these time-disparate relationships for the improed time  models [5], [3], [6]. Neural networks are particularly good
series forecasting, the system requires a flexible methodwly  at capturing complex non-linear characteristics of timéese
of combining multiple prediction models applied to multiple 5], [3]. Support vector machine represents another paverf

versions of the temporal data under significant noise com- . - . . L
ponent and variable temporal depth of predictions. In reply ~€9ression technique that immediately found applications

to this challenge a composite time series prediction model time series forecasting [7],[6].
is proposed which combines the strength of muitiple neural While there is an extensive knowledge available in ma-
network (NN) regressors applied to the temporally varied chine learning and pattern recognition, it has been rarely

feature subsets and the postprocessing smoothing of output : . - " .
developed to further reduce noise. The key strength of the nuel used in temporal aspects of time series prediction. Themajo

is its excellent adaptability and generalisation ability ahieved ~Problem for classification models lies in their inabilitypce-
through a highly diversified set of complementary NN models. dict continuous numerical values whereas advanced namline

The model has been evaluated within NISIS Competition 2006 regression models mostly designed for static problemsdcoul
and NN3 Competition 2007 concerning prediction of univarige ot properly handle the temporal aspect of time series.

and multivariate time-series. It showed the best predictie Thi K t it . del based
performance among 12 competitive models in the NISIS 2006 IS WOrk presents a COmposite regression model base

and is under evaluation within NN3 2007 Competition. on an ensemble of Neural Networks that is designed to
comprehensively handle time series in various operational
I. INTRODUCTION scenarios and generate robust predictions. The model has

. . L . een evaluated on the course of two international time serie
Recent e-revolution has led to the situation in which mo . .. . L
) L " . orecasting competitions in one of which it generated thst be
of business and organisation entities continuously gémera_ " o i
; . . . rediction results out of 12 competitive models worldwide.
massive amounts of data which de facto constitute multivari
ate time series. Prediction of such time series is extremel

important and vital for surviving and gaining competitive” NISIS Competition 2006

advantage in case of businesses and simply gives the awarethe gpjective of the NISIS 2006 competition was to create
ness and time to prepare for what is about to be presentdp adaptive mathematical model capturing the relationship
general case. Time series prediction is a very challengigwyeen 14 input variables and an output variable desgibin
signal processing problem as in real situations it is tybica catalytic oxidisation process in the multi-tube reactdneT
a function of a large number of factors most of which arg,pyt variables represent various measures continuoasly c
unknown or inaccessible at the time of prediction. Althouglected during the chemical process like: flow of air/gasses
such time series appear as very noisy, non-stationary a[ig/hr], temperature and various concentration measures,
non-linear signals, its history carries a significant emitee  \yhereas the output variable represents the catalyticigctiv
that can be used to build the predictive model [1].[2],[3]. of the process. All the variables vary over time effectively
A number of techniques have been developed in an atteMgfming a multivariate time series. There was no restnctio
to predict time series in various contexts typically in financoncerning model selection but an adaptive component of the
cial trading, energy and water distribution, chemical Propredictive model was an obligatory requirement.
cesses monitoring but also in various sociological and many |, the first phase of the competition 8 months of data
other problems. Starting from a simple linear Autoregnassi (242 * 24 hours), both input and outputy was given along
Moving Average models (ARMA) [2] through conditional \yith next months input data to create the model and make
heteroscedastic models like ARCH or GARCH [2] up t0yregictions for the catalytic activity over the next month.
the complex non-linear models [2],[4], the idea is similarThen on submission of the predictions the true output values
. o , are given for this month along with the input data for the next
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Fig. 2. Selected time series from the NN3 Competition.
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12 3 4 depth of outputs prediction. To take full advantage of these
1 output training Model update data characteristics the prediction problem has to be congidere
2 possible model of training data in 4 steps available within an appropriate temporal prediction paradigm.
3 prediction

A. Temporal Prediction Paradigm

Fig. 1. Visualisation of the NISIS 2006 Competition 2006ktas _ .. .
In defining the temporal prediction paradigm the two

| K , . important questions need to be answered: whether and how
B. NN3 N_eur_a Netwgr Forecatc,yng Competmgn 2007 geep history of inputs and outputs is to be used for predictio
The objective of this competition was to build a modela good starting point for this consideration is to initially

which would be able to generate predictions for a numbefssume that all available evidence can be used for pregctio
of univariate time series up to 18 points into the futurge:

from the end of available series. The challenge in this
competition lies in using the same model for a number of
very different series some of which are very volatile other
clearly exhibit periodicity whereas all the series contain

significant noise component. A snapshot of selected tim Mailable the problem reduces to a static regression alpwi

series of this competition is shown in Figure 2. Overall ¢her
was 11 time series of about 120 points and for each the fututr% only extract the output from current inputs yet without

18 points of the series had to be predicted. The predlctlothe ability to predict future output series. On the other gnd

are to be evaluated using symmetric mean absolute perc nly the output serieg;, ..y;— 1, is available the problem turns
g sy P ?rﬂ a standard auto regression trying to predict futureeser
error defined as follows:

solely from its historical evolution. The most comprehgasi
predictive model as given by Eq. 3 would use all the evidence

Yt = f(xtaxtfla s Xt—LyYt—1, "'7yt7L) (3)

wherex; is a vector of current inputsy; the current output
and L denotes the length of the time series. If oy is

ERR = Z [Yirue = Ypreal 100 (2) available, yet not necessarily result in the best perforean
(Yerue + Yprea)/2 In general a dedicated feature selection process has to be
applied to the pool of all available features in order to asitr
[I. FEATURE GENERATION AND SELECTION optimal subset of features i.e. the subset for which trained

The problem of time series prediction is merely a problermodel shows the highest predictive performance.
of extracting a manageable set of good features. The teinporaAnother point to consider when selecting features is the
dimension of the data multiplies the potential scopeMdf depth of predictions. Given that predictions are generated
feature space effectively stretching it up6- L dimensions from current or past feature values, if the depth of preditgi
where L. stands for the length of time series. What it meanseaches out multiple periods ahead the further predictions
is that whatever set of\/ features describes the actualwould have to use previous predictions as inputs. The accu-
problem, its temporal variability enforces to consideroals mulation of noise or other residual inaccuracies could very
the whole available history of feature series as potentiguickly make subsequent predictions highly inaccuratee Th
inputs to the predictive model. Careful selection of feasur problem complicates even more for multivariate time series
is therefore of much greater importance compared with thgith many inputsx,. Generation of deep output predictions
static-data prediction problem. On the other hand temporal ., whered is the prediction depth depends in that case on
feature selection depends strongly on the availability ahe prior prediction of inputs;,x, 1 < k < d if those are
features in their temporal relation to outputs as well as th@sed as features for predictive model of output.



B. Feature Selection the multiple-input one-output temporal regression proble
The available data for NISIS competition constitutes Neural Networks are considered to be a universal non-linear

timestamp column, 14 continuous variables and the contin[9ression model with the ability to control its complexity
ous output variable taking values within the range (-1,by. F @nd high predictive diversity that can be further encoudage
this particular problem the current inputs are always agl PY Varying network architecture and initialisation coratis,
and therefore even for deep predictions the predictive modg/0SS-training and even simple injection of noise to thadat
could use true current features. To a certain degree it [8]- Technically, an individual neural network represente

a reconstruction or recognition of the output from alway&€€dforward Multilayer Perceptron structured within gre
available inputs. Whether to include or not the histories dfidden layers sized up to : [32 32 32] which is trained using
inputs and output into the set of features the model will b8 &fficientiRPROP+ algorithm [11] that scales linearlyhwit
trained on is yet to be determined. the number of parameters to be optimised.

For NN3 competition the choice of features was much Giyen many diverse and well performing predictors it is
narrower. For each series the only option available was RPSSible to construct an ensemble of regressors that would
select features built from the history of the same outpd@intly outperform any individual regression model. Thése
series. In that case, however, any further-looking pregtist Many ways the individual NN models can be combined in
had to use its own predictions from previous steps promptirfj€ €nsemble: the simplest is just by averaging the indalidu
problems of accumulated noise mentioned in Section I. N€twork outputs, the other method often used is a linear

For both problems we applied the same rather simplistompination of NN outputs [9], [10]. Although complexity
feature selection strategy based on semi-exhaustivetsear@ Such model dramatically increases, given the performanc
The first method generated features from equally spac@&t'cal nature of the predictive tgsk and relatlvely sntkdta
historical subsequence defined by the following equation: S€t Such model becomes a viable and analytically strong

proposition.
fz :thi-stepai € [17277N] (4)

) A. Model Diversification
The maximum number of features was set as a parameter

and fixed atN = 100 for both problems to avoid lengthy ~TO €ncourage better generalisation ability of the over-
model training processes. all model a number of diversification strategies have been
The second selection method assumed greedy extensiorfBPlied to increase the complementarity of the constituent
the feature set by subsequently adding a single feature ensemble membe_r models. DlverS|f|cat|_on_ was applied at all
a,_; provided it reduces the error rate of the predictive modéitages of the individual NN model building process from
built on the appended feature set. If not, then the featuM"ying its internal architecture and initialisation cérah,
set is not extended and the feature is replaced with the through training on different noise-injected data subsgts
following fi., feature that undergoes the same performand@ varying the number of epochs after which the iRPRP+
testing process. The selection terminates when historshdef€@ning [11] terminates the model building process.
index reaches the upper limit arbitrarily set as in previous The selected numben/ of such NN models is first
selection method tdV = 100. If =, is a vector:x; then the assigned with different randomly selected architectufe¢se
process of searching extends at each time step by checkitigden layers not exceeding in size the limits set at eaar lay
subsequently all individual component of a vectar?_,. by [32 32 32] and randomly initialized weights. Then all the
All the configurations of steps and feature set sizec ~Models are cross-trained and evaluated on many different
N, for the first method and all incrementally appended@rtitions of the available training data following the dtd
subsets for the greedy selection method have been evaluag&gss-validation scheme and using slightly different nemb
exhaustively within the limits of data availability usinget ~©f €pochs after which the model learning process terminates
model prediction rate criterion. Surprisingly for the Ngs| On averagel//k models are trained on data from a single
competition data all the configurations of historical featu K-fold cross-validation partition and are assigned thererr
for both selection methods were worse than the actual currd@t€ obtained on the testing part of this partition. Overall
set of inputsx,. Even addition of past outputs did notthe ftraining process involved/ individual NN learning
improve the performance obtained for current inpufs;. Processes and scales linearly with the size of ensemble.
In case of the univariate series from NN3 competition, the _
two selection methods led to very different solutions agrod- Model selection
different timeseries with the greedy method clearly résglt  Following the training and evaluation process a two-stage
in a better predictive model performance. Details of thenodel selection is applied to construct the final ensembhle. |
selected feature subsets and the resulting predictive Imodiee first stage the fixed fraction of the best models from each
performances are shown in the experimental Section IV. split are selected according to their regression testingr.er
Then the models selected in the first stage are pooled tagethe
and again the selection guided by the individual error rate
Due to continuous nature of the output variables in botproceeds to give the final ensemble with the desired number
problems the choice of predictive model narrows down tof NN models for simplicity limited to 6 in our experiments.

IIl. NEURAL NETWORKSENSEMBLE



C. Predictions Smoothing and Adaptability Random Permutation +
. . Data partition (10-fold cross-validation)
Early experiments with the ensemble of neural networks

indicated that the predicted series on average followsequit //// / ,/ f 1 l \ \ \ \\\\\

well the true series, although it exhibit a significant noise Single training partition
component. To reduce the impact of noise an original o oo 5
smoothing technique has been applied to the signal composeld { [ { ‘ ‘ i
of the predicted series obtained for the training series and— ] l i 1 i i

directly following validation series that has not been used: 1*

during the ensemble training process and which was formeq Z)?E&.\ W)&(f\\ /)PE&X ,,/)?3&\ /)PE&X /)?3&\
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signal is compared with the corresponding true output serie | ' T T : ] ]

to build an optimised smoothing of the predicted time ° ¢ o ; N ® & L <
series. The smoothing model applied to the data comes in‘\*_\_x__ ____________ = =5 = %:E
two stages. First a procedure callgignal filter(x, k,r) is e 5o

used to remove high-level noise component. This procedure

compares the predicted signal with the bi-directionaldpst »

. . . .. . o
moving average of this signal and replaces the originaldign | = . ... ... ... ... \\“ g2
with the aggregated signal where the difference betweer| " v Y g
the 2 signals is greater thantimes standard deviation of e ——— L
the original signal. The resulting signal is further smaath GG GGG g
using the same bi-directional n-step moving average yet in Model Fusion Operator (Mean) g
generally using different step parameter of the aggregatio

K-Step bi-directional smoothing is a simple procedure sm
applicable to time seriegt) wheret = 1.., N, which returns Postprocessing: filtering and smoothing Pens |58
smoothed serieg’(t) such that: S&

Finai
yzlf = le 1 Z;H_f k1+1 y, for t=Fk, .. N—-k+1 Model
I = Zt+k cofor t=1,..k—1 ~

Yi = t-Hc 1
- - Fig. 3. NN ensemble model building process
vi= e Zi:t_kﬂ yi for t=N—-k+2,.,N

)

The three smoothing parameters: k,r and n are optimised
with respect to the regression error rate obtained for thghe optimisation of the moving window width for adaptive
validation set via a naive looping through all possiblgearning showed that 8 months is the optimal window width,
combinations within the grid of 20 values per parametafhich suggests that the available data is still not in exémss
giving the total of 8000 evaluations. The trained ensemblgaining and at this stage it appears that the more data used
of NN models along with optimised smoothing parameterfyr training the better the performance. Using this 8-menth
constitute the fully trained model ready to make predicion yindow the presented model was subsequently rebuilt on the

To prOVide certain level of model adaptablllty the trainin% months of preceding data using first 6 months for proper
process was fixed to the the data dynamically changinggining and the remaining two months for validation and
according to the fixed-width moving window scheme. Asfine-tuning of the smoothing parameters as shown in the
suming that the available training series finishes at ttme example in Figure 4. Interestingly, at each iteration of the
the model was trained on the series of the lengtranging model testing process, the model found significantly déffer
from¢—w+1to ¢t. The window widthw has been optimised smoothing parameters. Initially the optimal set of smaughi
via a naive evaluation of the whole range of grided WindOV}barameters wall1,0.9,56), yet for the last prediction phase
widths within the reasonable limits specific to each serieghe optimal parameters turned out toh®.8, 231). It proves
The conceptual scheme capturing all the step of the modglat whereas the global analytical engine of the model inher
building process is depicted in Figure 3. ited from a mixture of neural networks remains data greedy,
the smoothing parameters become very sensitive to the local
variability of the data and hence accommodate the adaptive

The experimental part of this work forms the submission ofomponent of the model tuning. The complete numerical
the model predictions to the NISIS Competition 2006 and iperformance comparison of all the models participatindgpén t
parts experiments carried out on the training part of the NNRISIS Competition 2006 is shown in Table I. Note that the
Neural Network Forecasting Competition 2007. As discussautesented model outperformed immensely other competitors
in Section | the prediction of the catalyst activity timeissr leaving the second best model with twice as large an error
for NISIS 2006 was organised in 4 monthly slots of the folrate. It is important to note that these prediction results
lowing 8 months of complete input and output training datehave been obtained using current input series as features

IV. EXPERIMENTS



‘ ‘ . _ ‘ whether the peak is a genuine signal behaviour that could
Treining pvalidationy - Testng influence the future or it is just a sharp noise impulse. Drive
by the overall error minimisation the model tends to ignore
the infrequent out-of-pattern sharp impulses, yet somesim
tend to successfully accommodate repetitive peaks even if
the signal rises above 3 standard deviations above the mean
in a single time step as shown for tB&? time series (TS-
3). The results also demonstrated that the greedy increinent
method for feature selection tends to produce better gesult
Finally, looking into the selected features and the optimal
| smoothing parameters it has to be said that the models were
very different for each time series. Some statistics dbsugi
the selected feature sets along with the smoothing parasnete
are shown in Table II.
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V. CONCLUSIONS

This work promotes a new model for time series prediction

which combines highly robust ensemble of neural network
only. As mentioned in Section II-B all combinations usingregressors with the intelligent smoothing of highly noisy
historical inputs and outputs resulted in a significantlyseo output signal. The individual MLP type neural networks
performance which due to a lack of space is not shown here diversified by forcing different internal architectuned
weight initialisation models and are cross-trained onedéht
partitions of the training data with injected noise computne
to further boost the generalisation abilities of the final
ensemble. The model building process is supported by the

Fig. 4. Model building process for NISIS Competition 2006

TABLE |
ERROR RATES[%] COMPARISON FOR ALL MODELS SUBMITTED TO
NISIS 2006 WMPETITION

Rank [ Month 1 | Month 2 | Month 3 | Month 4 | Average simple yet effective greedy feature generation method and
1 20.13 21.01 12.87 19.14 18.28 the predicted output signal is further validated using iaag

2 4341 18.38| 5231 2414 34.56 smoothing technique to remove excessive noise component.
3 63.15 17.83 33.89 28.91 | 35.94 .

4 62.56 1448 5375| 3705| 4196 The model has been tested on the course of 2 International
5 81.46 29.80 33.78 23.06 | 42.02 competitions for time series predictions. It has won NISIS
6 59.01 | 6991} 3721} 27.54) 4841 2006 Competition leaving the second-best model with twice
7 24.13 87.15 54.16 28.74 | 4854 . :

8 75.97 25 48 80.20 2777 5235 as large an error rate and. is u_nder evaluation for th_e !\IN3
9 77.78 84.80 32.24 22.21 54.25 2007 Competition for which it shows robust prediction
10 47.87| 12671  3259) 3945|6165 results across many very different time series.

11 52.56 | 135.91 35.46 57.95 | 70.47

REFERENCES

" . ] T. Dietterich and R. Michalski. Learning to predict segges. In
For the NN3 2007 competition apparently S|mpler prOblerH- Machine Learning: An Artificial Intelligence Approach, v@, Morgan

required in fact more complex classifier selection process. Kaufmann, 1986
For all 11 time series of about 120 data points each exac:[? R.S. Tsai,Analysis of financial time serieSohn Wiley & Sons, 2002.

oo . C.L. Giles, S. Lawrence and A.C. TsdNoisy time series prediction
the same model building process has been applied to gene eusing recurrent neural networks and grammatical inferenkkachine

11 fine-tuned ensembles with a set of optimised smoothing Learning vol. 44(1/2), pp. 161-183, 2001.
parameters each. The predictions obtained for the trainirﬁﬁ M. Casdagli,Nonlinear prediction of chaotic time serieBhysica vol.

. . . . . 35, pp. 335-356, 1989.
and validation sets are shown in Figure 5 in 2 versio 8] Z. \Vojinovic, V. Kecman, R. SeidelA data mining approach to

corresponding to the feature selection method used. The financial time series modelling and forecastingternational Journal of
first column represents predictions obtained using equidis Intelligent Systems in Accounting, Finance & Managemerit £0(4),

. p. 225-239, 2001.
tant stepped Supse_quence S_e”es Whereas the S‘?Cond CO%T@.E.H. Tay and L.J. Cadyiodified support vector machines in financial
shows the predictions obtained using greedy incremental time series forecastindNeurocomputing vol. 48(1), pp. 847-861, 2002.

additions of historical series as described in SectiorClll- [7]1 S. Mukherjee, E. Osuna and F. Giroblpnlinear prediction of chaotic

. ] ] ] ) time series using support vector machinés Proc. of the7t” |EEE
The predicted signal is overlayed on the thick lighter true Workshop on Neural Networks for Signal Processing, Amediarid,

signal for comparison. The numerical mean error rate for FL, IEEE Press, pp. 511-520, 1997.

only the validation set is also shown in Table Ill. For most8] A.J.C SharkeyCombining Atrtificial Neural Nets: Ensemble and Mod-
. . . . . . ular Multi-Net SystemsSpringer-Verlag, London, UK, 1999.
of the series the predicted signal is very close to its oalyin [9] A.J.C Sharkey and N.E. Sharkegombining diverse neural net¥he

values, which is the case for both the training part and  Knowledge Engineering Review vol. 12(3), pp. 231-247, 1997
validation part which was not used to train the ensemble ¥0] S.Hansen and P. Salamdyeural network ensembletEEE Trans. on

| networks. The model sometimes struaales with sudd Patt. Analysis and Machine Intelligence 12(10), pp. 998411990.
neura . : . g9 A ﬁq] C. Igel and M. Husken)mproving the Rprop Learning Algorithm
sharp signal peaks up to multiple standard deviations over Proc. of the 2nd Int. ICSC Symposium on Neural Computatiqn, p

its mean. The problem with such peak is that it is not clear 115-121, 2000.



TABLE Il
OPTIMISED MODEL PARAMETERS INCLUDING FEATURE SET STATISTIS AND SMOOTHING PARAMETERS FORL1 TIME SERIES

Time series TS-1| TS-2| TS-3| TS-4| TS5 TS-6| TS-7| TS-8| TS-9 | TS-10 | TS-11 | Mean
Feature set size 7 7 5 7 10 4 12 4 10 7 4 7
Mean feature lag| 6.28 | 16.14 19 | 9.28 | 14.3 3| 1391 | 6.25| 13.6 12 115 | 11.58
Min feature lag 1 1 1 1 1 1 1 1 1 1 1 1
Max feature lag 18 49 36 19 40 6 32 13 29 41 40 | 29.36
Smoothing par. k 4 1 1 1 7 14 9 2 15 7 2 5.72
Smoothing par. r| 0.44 0.01| 001| 0.01| 0.00| 0.02 0.01| 048 | 0.01 0.17 0.11 0.11
Smoothing par. n 1 1 1 1 1 2 1 2 3 6 17 3.27
TABLE IlI

ERROR RATES[%] COMPARISON FOR ALL11 TIME SERIES WITHINNN3 2007 GMPETITION OBTAINED USING NEURAL NETWORK ENSEMBLE WITH2
DIFFERENT FEATURE SELECTION METHOD

Selection Method | TS-1| TS-2 | TS-3| TS4| TS5| TS-6| TS-7| TS-8| TS-9| TS-10| TS-11 | Mean
Equidistant Step 216 | 12.17 | 49.73 | 14.71 | 2.30| 4.65| 298 | 1593 | 3.37 | 67.73| 10.25| 16.91
Greedy incrementall 2.12 7.17 | 27.38 | 7.86| 121 | 494 | 2.86 | 13.73 | 2.72| 69.08| 11.78| 13.71

Training Validation Training Validation
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Fig. 5. Comparison of the predictions generated by the NMrabte for 11 time series of the NN3 Competition for 2 selectitrategies: I** column)
equidistant stepped metho®"¢ column) greedy incremental method




