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Abstract— Rapidly evolving businesses generate massive
amounts of time-stamped data sequences and defy a demand
for massively multivariate time series analysis. For such data
the predictive engine shifts from the historical auto-regression
to modelling complex non-linear relationships between multi-
dimensional features and the time series outputs. In order to
exploit these time-disparate relationships for the improved time
series forecasting, the system requires a flexible methodology
of combining multiple prediction models applied to multiple
versions of the temporal data under significant noise com-
ponent and variable temporal depth of predictions. In reply
to this challenge a composite time series prediction model
is proposed which combines the strength of multiple neural
network (NN) regressors applied to the temporally varied
feature subsets and the postprocessing smoothing of outputs
developed to further reduce noise. The key strength of the model
is its excellent adaptability and generalisation ability achieved
through a highly diversified set of complementary NN models.
The model has been evaluated within NISIS Competition 2006
and NN3 Competition 2007 concerning prediction of univariate
and multivariate time-series. It showed the best predictive
performance among 12 competitive models in the NISIS 2006
and is under evaluation within NN3 2007 Competition.

I. I NTRODUCTION

Recent e-revolution has led to the situation in which most
of business and organisation entities continuously generate
massive amounts of data which de facto constitute multivari-
ate time series. Prediction of such time series is extremely
important and vital for surviving and gaining competitive
advantage in case of businesses and simply gives the aware-
ness and time to prepare for what is about to be present in
general case. Time series prediction is a very challenging
signal processing problem as in real situations it is typically
a function of a large number of factors most of which are
unknown or inaccessible at the time of prediction. Although
such time series appear as very noisy, non-stationary and
non-linear signals, its history carries a significant evidence
that can be used to build the predictive model [1],[2],[3].

A number of techniques have been developed in an attempt
to predict time series in various contexts typically in finan-
cial trading, energy and water distribution, chemical pro-
cesses monitoring but also in various sociological and many
other problems. Starting from a simple linear Autoregressive
Moving Average models (ARMA) [2] through conditional
heteroscedastic models like ARCH or GARCH [2] up to
the complex non-linear models [2],[4], the idea is similar:
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establish the regression-based description of the future series
based on the historical data series. More recently a number
of machine learning techniques started to be applied to time
series forecasting and on a number of occasions showed
considerable improvement compared to traditional regression
models [5], [3], [6]. Neural networks are particularly good
at capturing complex non-linear characteristics of time series
[5], [3]. Support vector machine represents another powerful
regression technique that immediately found applicationsin
time series forecasting [7],[6].

While there is an extensive knowledge available in ma-
chine learning and pattern recognition, it has been rarely
used in temporal aspects of time series prediction. The major
problem for classification models lies in their inability topre-
dict continuous numerical values whereas advanced nonlinear
regression models mostly designed for static problems could
not properly handle the temporal aspect of time series.

This work presents a composite regression model based
on an ensemble of Neural Networks that is designed to
comprehensively handle time series in various operational
scenarios and generate robust predictions. The model has
been evaluated on the course of two international time series
forecasting competitions in one of which it generated the best
prediction results out of 12 competitive models worldwide.

A. NISIS Competition 2006

The objective of the NISIS 2006 competition was to create
an adaptive mathematical model capturing the relationship
between 14 input variables and an output variable describing
catalytic oxidisation process in the multi-tube reactor. The
input variables represent various measures continuously col-
lected during the chemical process like: flow of air/gasses
[kg/hr], temperature and various concentration measures,
whereas the output variable represents the catalytic activity
of the process. All the variables vary over time effectively
forming a multivariate time series. There was no restriction
concerning model selection but an adaptive component of the
predictive model was an obligatory requirement.

In the first phase of the competition 8 months of data
(242 * 24 hours), both inputx and outputy was given along
with next months input data to create the model and make
predictions for the catalytic activity over the next month.
Then on submission of the predictions the true output values
are given for this month along with the input data for the next
month and the process repeats over the period of 4 months
as shown in Figure 1. The model was evaluated usingN =
15 output predictions per months representing the activity
measured at the end of every second day and the overall
error rate is calculated as follows:
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Fig. 1. Visualisation of the NISIS 2006 Competition 2006 task.

B. NN3 Neural Network Forecasting Competition 2007

The objective of this competition was to build a model
which would be able to generate predictions for a number
of univariate time series up to 18 points into the future
from the end of available series. The challenge in this
competition lies in using the same model for a number of
very different series some of which are very volatile other
clearly exhibit periodicity whereas all the series containa
significant noise component. A snapshot of selected time
series of this competition is shown in Figure 2. Overall there
was 11 time series of about 120 points and for each the future
18 points of the series had to be predicted. The predictions
are to be evaluated using symmetric mean absolute percent
error defined as follows:

ERR =

11
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· 100 (2)

II. FEATURE GENERATION AND SELECTION

The problem of time series prediction is merely a problem
of extracting a manageable set of good features. The temporal
dimension of the data multiplies the potential scope ofM -
feature space effectively stretching it up toM ·L dimensions
whereL stands for the length of time series. What it means
is that whatever set ofM features describes the actual
problem, its temporal variability enforces to consider also
the whole available history of feature series as potential
inputs to the predictive model. Careful selection of features
is therefore of much greater importance compared with the
static-data prediction problem. On the other hand temporal
feature selection depends strongly on the availability of
features in their temporal relation to outputs as well as the

Fig. 2. Selected time series from the NN3 Competition.

depth of outputs prediction. To take full advantage of these
characteristics the prediction problem has to be considered
within an appropriate temporal prediction paradigm.

A. Temporal Prediction Paradigm

In defining the temporal prediction paradigm the two
important questions need to be answered: whether and how
deep history of inputs and outputs is to be used for prediction.
A good starting point for this consideration is to initially
assume that all available evidence can be used for predictions
i.e:

yt = f(xt,xt−1, ..,xt−L, yt−1, ..., yt−L) (3)

wherext is a vector of current inputs,yt the current output
and L denotes the length of the time series. If onlyxt is
available the problem reduces to a static regression allowing
to only extract the output from current inputs yet without
the ability to predict future output series. On the other endif
only the output seriesyt, ..yt−L is available the problem turns
into a standard auto regression trying to predict future series
solely from its historical evolution. The most comprehensive
predictive model as given by Eq. 3 would use all the evidence
available, yet not necessarily result in the best performance.
In general a dedicated feature selection process has to be
applied to the pool of all available features in order to extract
optimal subset of features i.e. the subset for which trained
model shows the highest predictive performance.

Another point to consider when selecting features is the
depth of predictions. Given that predictions are generated
from current or past feature values, if the depth of predictions
reaches out multiple periods ahead the further predictions
would have to use previous predictions as inputs. The accu-
mulation of noise or other residual inaccuracies could very
quickly make subsequent predictions highly inaccurate. The
problem complicates even more for multivariate time series
with many inputsxt. Generation of deep output predictions
yt+d whered is the prediction depth depends in that case on
the prior prediction of inputsxt+k, 1 ≤ k ≤ d if those are
used as features for predictive model of output.



B. Feature Selection

The available data for NISIS competition constitutes a
timestamp column, 14 continuous variables and the continu-
ous output variable taking values within the range (-1,1). For
this particular problem the current inputs are always available
and therefore even for deep predictions the predictive model
could use true current features. To a certain degree it is
a reconstruction or recognition of the output from always
available inputs. Whether to include or not the histories of
inputs and output into the set of features the model will be
trained on is yet to be determined.

For NN3 competition the choice of features was much
narrower. For each series the only option available was to
select features built from the history of the same output
series. In that case, however, any further-looking predictions
had to use its own predictions from previous steps prompting
problems of accumulated noise mentioned in Section I.

For both problems we applied the same rather simplistic
feature selection strategy based on semi-exhaustive search.
The first method generated features from equally spaced
historical subsequence defined by the following equation:

fi = xt−i·step, i ∈ [1, 2, ..., N ] (4)

The maximum number of features was set as a parameter
and fixed atN = 100 for both problems to avoid lengthy
model training processes.

The second selection method assumed greedy extension of
the feature set by subsequently adding a single featurefi =
xt−i provided it reduces the error rate of the predictive model
built on the appended feature set. If not, then the feature
set is not extended and thefi feature is replaced with the
following fi+1 feature that undergoes the same performance
testing process. The selection terminates when history depth
index i reaches the upper limit arbitrarily set as in previous
selection method toN = 100. If xt is a vector:xt then the
process of searching extends at each time step by checking
subsequently all individualj component of a vectorxj

t−i.
All the configurations of steps and feature set sizen ≤

N , for the first method and all incrementally appended
subsets for the greedy selection method have been evaluated
exhaustively within the limits of data availability using the
model prediction rate criterion. Surprisingly for the NISIS
competition data all the configurations of historical features
for both selection methods were worse than the actual current
set of inputsxt. Even addition of past outputs did not
improve the performance obtained for current inputsxt+i.
In case of the univariate series from NN3 competition, the
two selection methods led to very different solutions across
different timeseries with the greedy method clearly resulting
in a better predictive model performance. Details of the
selected feature subsets and the resulting predictive model
performances are shown in the experimental Section IV.

III. N EURAL NETWORKSENSEMBLE

Due to continuous nature of the output variables in both
problems the choice of predictive model narrows down to

the multiple-input one-output temporal regression problem.
Neural Networks are considered to be a universal non-linear
regression model with the ability to control its complexity
and high predictive diversity that can be further encouraged
by varying network architecture and initialisation conditions,
cross-training and even simple injection of noise to the data
[8]. Technically, an individual neural network represented a
Feedforward Multilayer Perceptron structured within three
hidden layers sized up to : [32 32 32] which is trained using
an efficient iRPROP+ algorithm [11] that scales linearly with
the number of parameters to be optimised.

Given many diverse and well performing predictors it is
possible to construct an ensemble of regressors that would
jointly outperform any individual regression model. Thereis
many ways the individual NN models can be combined in
the ensemble: the simplest is just by averaging the individual
network outputs, the other method often used is a linear
combination of NN outputs [9], [10]. Although complexity
of such model dramatically increases, given the performance
critical nature of the predictive task and relatively smalldata
set such model becomes a viable and analytically strong
proposition.

A. Model Diversification

To encourage better generalisation ability of the over-
all model a number of diversification strategies have been
applied to increase the complementarity of the constituent
ensemble member models. Diversification was applied at all
stages of the individual NN model building process from
varying its internal architecture and initialisation condition,
through training on different noise-injected data subsetsup
to varying the number of epochs after which the iRPRP+
learning [11] terminates the model building process.

The selected numberM of such NN models is first
assigned with different randomly selected architectures of the
hidden layers not exceeding in size the limits set at each layer
by [32 32 32] and randomly initialized weights. Then all the
models are cross-trained and evaluated on many different
partitions of the available training data following the k-fold
cross-validation scheme and using slightly different number
of epochs after which the model learning process terminates.
On averageM/k models are trained on data from a single
k-fold cross-validation partition and are assigned the error
rate obtained on the testing part of this partition. Overall
the training process involvesM individual NN learning
processes and scales linearly with the size of ensemble.

B. Model selection

Following the training and evaluation process a two-stage
model selection is applied to construct the final ensemble. In
the first stage the fixed fraction of the best models from each
split are selected according to their regression testing error.
Then the models selected in the first stage are pooled together
and again the selection guided by the individual error rate
proceeds to give the final ensemble with the desired number
of NN models for simplicity limited to 6 in our experiments.



C. Predictions Smoothing and Adaptability

Early experiments with the ensemble of neural networks
indicated that the predicted series on average follows quite
well the true series, although it exhibit a significant noise
component. To reduce the impact of noise an original
smoothing technique has been applied to the signal composed
of the predicted series obtained for the training series and
directly following validation series that has not been used
during the ensemble training process and which was formed
of about a quarter of left out training set. Such predicted
signal is compared with the corresponding true output series
to build an optimised smoothing of the predicted time
series. The smoothing model applied to the data comes in
two stages. First a procedure calledsignal filter(x, k, r) is
used to remove high-level noise component. This procedure
compares the predicted signal with the bi-directional k-step
moving average of this signal and replaces the original signal
with the aggregated signal where the difference between
the 2 signals is greater thanr times standard deviation of
the original signal. The resulting signal is further smoothed
using the same bi-directional n-step moving average yet in
generally using different step parameter of the aggregation.

K-Step bi-directional smoothing is a simple procedure
applicable to time seriesy(t) wheret = 1.., N , which returns
smoothed seriesy′(t) such that:
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The three smoothing parameters: k,r and n are optimised

with respect to the regression error rate obtained for the
validation set via a naive looping through all possible
combinations within the grid of 20 values per parameter
giving the total of 8000 evaluations. The trained ensemble
of NN models along with optimised smoothing parameters
constitute the fully trained model ready to make predictions.

To provide certain level of model adaptability the training
process was fixed to the the data dynamically changing
according to the fixed-width moving window scheme. As-
suming that the available training series finishes at timet
the model was trained on the series of the lengthw ranging
from t−w+1 to t. The window widthw has been optimised
via a naive evaluation of the whole range of grided window
widths within the reasonable limits specific to each series.
The conceptual scheme capturing all the step of the model
building process is depicted in Figure 3.

IV. EXPERIMENTS

The experimental part of this work forms the submission of
the model predictions to the NISIS Competition 2006 and in
parts experiments carried out on the training part of the NN3
Neural Network Forecasting Competition 2007. As discussed
in Section I the prediction of the catalyst activity time series
for NISIS 2006 was organised in 4 monthly slots of the fol-
lowing 8 months of complete input and output training data.

Fig. 3. NN ensemble model building process

The optimisation of the moving window width for adaptive
learning showed that 8 months is the optimal window width,
which suggests that the available data is still not in excessfor
training and at this stage it appears that the more data used
for training the better the performance. Using this 8-months
window the presented model was subsequently rebuilt on the
8 months of preceding data using first 6 months for proper
training and the remaining two months for validation and
fine-tuning of the smoothing parameters as shown in the
example in Figure 4. Interestingly, at each iteration of the
model testing process, the model found significantly different
smoothing parameters. Initially the optimal set of smoothing
parameters was(11, 0.9, 56), yet for the last prediction phase
the optimal parameters turned out to be7, 0.8, 231). It proves
that whereas the global analytical engine of the model inher-
ited from a mixture of neural networks remains data greedy,
the smoothing parameters become very sensitive to the local
variability of the data and hence accommodate the adaptive
component of the model tuning. The complete numerical
performance comparison of all the models participating in the
NISIS Competition 2006 is shown in Table I. Note that the
presented model outperformed immensely other competitors
leaving the second best model with twice as large an error
rate. It is important to note that these prediction results
have been obtained using current input series as features
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Fig. 4. Model building process for NISIS Competition 2006

only. As mentioned in Section II-B all combinations using
historical inputs and outputs resulted in a significantly worse
performance which due to a lack of space is not shown here.

TABLE I

ERROR RATES[%] COMPARISON FOR ALL MODELS SUBMITTED TO

NISIS 2006 COMPETITION

Rank Month 1 Month 2 Month 3 Month 4 Average
1 20.13 21.01 12.87 19.14 18.28
2 43.41 18.38 52.31 24.14 34.56
3 63.15 17.83 33.89 28.91 35.94
4 62.56 14.48 53.75 37.05 41.96
5 81.46 29.80 33.78 23.06 42.02
6 59.01 69.91 37,21 27.54 48.41
7 24.13 87.15 54.16 28.74 48.54
8 75.97 25.48 80,20 27.77 52.35
9 77.78 84.80 32.24 22.21 54.25
10 47.87 126.71 32.59 39.45 61.65
11 52.56 135.91 35.46 57.95 70.47

For the NN3 2007 competition apparently simpler problem
required in fact more complex classifier selection process.
For all 11 time series of about 120 data points each exactly
the same model building process has been applied to generate
11 fine-tuned ensembles with a set of optimised smoothing
parameters each. The predictions obtained for the training
and validation sets are shown in Figure 5 in 2 versions
corresponding to the feature selection method used. The
first column represents predictions obtained using equidis-
tant stepped subsequence series whereas the second column
shows the predictions obtained using greedy incremental
additions of historical series as described in Section III-C.
The predicted signal is overlayed on the thick lighter true
signal for comparison. The numerical mean error rate for
only the validation set is also shown in Table III. For most
of the series the predicted signal is very close to its original
values, which is the case for both the training part and
validation part which was not used to train the ensemble of
neural networks. The model sometimes struggles with sudden
sharp signal peaks up to multiple standard deviations over
its mean. The problem with such peak is that it is not clear

whether the peak is a genuine signal behaviour that could
influence the future or it is just a sharp noise impulse. Driven
by the overall error minimisation the model tends to ignore
the infrequent out-of-pattern sharp impulses, yet sometimes
tend to successfully accommodate repetitive peaks even if
the signal rises above 3 standard deviations above the mean
in a single time step as shown for the3rd time series (TS-
3). The results also demonstrated that the greedy incremental
method for feature selection tends to produce better results.

Finally, looking into the selected features and the optimal
smoothing parameters it has to be said that the models were
very different for each time series. Some statistics describing
the selected feature sets along with the smoothing parameters
are shown in Table II.

V. CONCLUSIONS

This work promotes a new model for time series prediction
which combines highly robust ensemble of neural network
regressors with the intelligent smoothing of highly noisy
output signal. The individual MLP type neural networks
are diversified by forcing different internal architectureand
weight initialisation models and are cross-trained on different
partitions of the training data with injected noise component
to further boost the generalisation abilities of the final
ensemble. The model building process is supported by the
simple yet effective greedy feature generation method and
the predicted output signal is further validated using original
smoothing technique to remove excessive noise component.
The model has been tested on the course of 2 International
competitions for time series predictions. It has won NISIS
2006 Competition leaving the second-best model with twice
as large an error rate and is under evaluation for the NN3
2007 Competition for which it shows robust prediction
results across many very different time series.
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TABLE II

OPTIMISED MODEL PARAMETERS INCLUDING FEATURE SET STATISTICS AND SMOOTHING PARAMETERS FOR11 TIME SERIES.

Time series TS-1 TS-2 TS-3 TS-4 TS-5 TS-6 TS-7 TS-8 TS-9 TS-10 TS-11 Mean
Feature set size 7 7 5 7 10 4 12 4 10 7 4 7
Mean feature lag 6.28 16.14 19 9.28 14.3 3 13.91 6.25 13.6 12 11.5 11.58
Min feature lag 1 1 1 1 1 1 1 1 1 1 1 1
Max feature lag 18 49 36 19 40 6 32 13 29 41 40 29.36
Smoothing par. k 4 1 1 1 7 14 9 2 15 7 2 5.72
Smoothing par. r 0.44 0.01 0.01 0.01 0.01 0.01 0.01 0.48 0.01 0.17 0.11 0.11
Smoothing par. n 1 1 1 1 1 2 1 2 3 6 17 3.27

TABLE III

ERROR RATES[%] COMPARISON FOR ALL11 TIME SERIES WITHINNN3 2007 COMPETITION OBTAINED USING NEURAL NETWORK ENSEMBLE WITH2

DIFFERENT FEATURE SELECTION METHOD.

Selection Method TS-1 TS-2 TS-3 TS-4 TS-5 TS-6 TS-7 TS-8 TS-9 TS-10 TS-11 Mean
Equidistant Step 2.16 12.17 49.73 14.71 2.30 4.65 2.98 15.93 3.37 67.73 10.25 16.91
Greedy incremental 2.12 7.17 27.38 7.86 1.21 4.94 2.86 13.73 2.72 69.08 11.78 13.71

Training Validation Training Validation

Fig. 5. Comparison of the predictions generated by the NN ensemble for 11 time series of the NN3 Competition for 2 selection strategies: (1st column)
equidistant stepped method, (2nd column) greedy incremental method


