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Abstract— This paper suggests a constructive fuzzy system behavior of a dynamic system on the basis of observations.
modeling for time series prediction. The model proposed is The modeling task is then complicated by the ignorance of

based on Takagi-Sugeno system and it comprises o phases.ihg gptimal input space and all the model uncertainties tend
First, a fuzzy rule base structure is initialized and adjusted .
to downgrade the prediction accuracy.

via the Expectation Maximization optimization technique (EM). ) ’ o . .
In the second phase the initial system is modified and the In this paper, the relevant inputs for building time series
structure is determined in a constructive fashion. This phase models are selected applying a combined methodology based
implements a constructive version of the EM algorithm, as well gn the False Nearest Neighborhood algoritti#Ni) [3] and

as adding and pruning operators. The constructive leaming o one proposed in [4], which is based on the Partial Mutual

process reduces model complexity and defines automatically the ) o . - .
structure of the system, providing an efficient time series model. 'Nformation Criterion PMI), originally proposed in [5]. This

The performance of the proposed model is verified for two series approach is applied because it is capable of dealing with non
of the reduced data set at the Neural Forecasting Competition, linear relationship among variables involved, which is enor
for one to eighteen steps ahead forecasting. Results show theappropriate for the problems under study.
effectiveness of the constructive time series model. It is well known that modeling methods are problem de-
pendant and that any modeling methodology cannot pretend
to be completely universal. At this paper, we suggest a time
Currently, there is a vast literature describing models igeries model based on a constructive-fuzzy system modeling
the field of time series for a variety of applications, suchC-FSM), which is built in two stages. First, an initial model
as filtering, prediction of future values, simulation or plsn  structure based on two fuzzy rules is generated with availab
modeling to provide some kind of data description [1]. Fronhistorical data. The parameters of this structure are ajus
all these tasks, time series prediction is a difficult oné thaia a classical Expectation Maximization (EM) algorithn).[6
involves different stages and very challenging problerks li |n the second stage, the initial structure is modified and
input selection, model generation and model evaluation. refined based on a constructive offline learning and on adding
On the one hand, it is common that techniques for buildingnd pruning operators. Hence, the classical EM algorithm
time serie models be based on linear strategies, considerig adapted as a learning algorithm for fuzzy rule based
only linear dependencies among variables, as the traditiorsystems. This algorithm develops parameters adjustmeht an
Box & Jenkins methodology [2]. The drawback of applyingan automatic structure selection simultaneously, which is
this kind of modeling for nonlinear problems is that theygreat advantage, when compared with other approaches of
are almost unable to capture nonlinear relationships amofsige literature.
variables, resulting in models with low performance andrpoo The proposed approach is applied to forecast two series
prediction results. belonging to the reduced data set at the Neural Forecasting
On the other hand, non-linear modeling based on neur@ompetition. The constructive models are adjusted, aedlyz
and fuzzy techniques have emerged as effective nonlinead evaluated through a multiple steps ahead forecasting.
predictor alternatives, since they are able to captureimes The paper is organized as follows. Section Il introduces
input-output relationships. However, the determinatibthe  the structure of th€-FSM. Based on the proposed architec-
optimal structure is a critical issue that cannot be adédssture, Section Ill details the constructive learning altori.
analytically. If some understanding of the problem or somgimulation results are shown in Section IV. Finally, some
information is available, and the complexity of the funatio conclusions are presented in Section V.
to map is low, thus, the possibility of finding a topology @os
to optimal increases. When the complexity of the problem
goes up, we have to use all the available methods, includingThe structure of the&C-FSM is composed by a set af/
techniques from the statistical theory field. fuzzy rules, which are based on the first order Takagi-Sugeno
Time series modeling is a class of problem where the goél'S) fuzzy system [7], as illustrated in Fig. 1.
is to approximate an hypothetical function describing the Let x* = [z}, %, ..., 2%] € RP be the input vector

at instantk, k € ZI; §* € R the output model, for its
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I. INTRODUCTION

Il. STRUCTURE OF THEC-FSM



covariance matrixV; € RP*P. Hence, a fuzzy rule is rule, given the input vectox”, as well as the parameters
assigned to each partition, and a local model is adjusted. Asvariance matriXy; and centers;.
partitions are not roughly defined, every input pattern will Indeed, from Eq.(3)g* satisfies the unity condition:
have a membership degreg associated to each subregion.

Y ogr=1 5)

which is a condition necessary to consigéras a member-
ship function in fuzzy theory [8].

The output modef)* is computed as a non-linear combi-
nation among the outputs of the local modgfsand theirs
respective membership degregs that is:

M
9" =" gi(x") yf (6)
i=1

Egs.(2)-(6), have been detailed for a single output. Howeve
this model can be extended for modeling multiple outputs.
Fig. 1. A general structure of the-FSM, composed by a total ofz  1NhUS, the proposed model may be interpreted as an inference
fuzzy rules. mechanism, codified into the model structure, where the
model outputj* is calculated by means of an aggregated
The system emulates a fuzzy reasoning mechanism, &fdue of M local linear modelsy”, according to Eq. (6).
coding a fuzzy rules base in the form Bf <antecedent Notice thatgf relies onx*, c¢; and V.
THEN <consequent. The antecedent part is represented Different papers in the literature have done interesting
by a subregion of the input space, and the consequent pargismparison studies among statistical methods and compu-
delineated by a local model. Therefore, theth fuzzy rule tational models based on neural networks and fuzzy systems
is defined as (see [9] and [10]). Both, regression models and GRESM
model proposed in this work, are used to model a relationship
among variables, commonly represented as

9" = fx"] = flar, a5, 0y

wheref[-] is the functional relationship between independent
(or observable) variables” and the dependant variabjé;
which ¢* = [I 2} 2§ ...2k] € R®+D is a vector 3" denotes the estimated value gf. Following this, the
composed by thek—th input vector and a constant term;goal of the modelC-FSM is to predict the single dependent
0; = [0i0 051 ... 0;y) € RPHD s the coefficients vector for variabley® from its input variablex®, generally composed

R': IF < x* belongs to the #—th” region with a
membership degreg® > THEN < g% =¥ > (1)

wherey¥, i = 1,..., M, is defined by a local linear model:

yb = ¢b x 0," 2

each local model. Membership degregéx®) e [0,1], i = by lagged realizations of its output. This predicted vajtiés
1,..., M, are computed as: represented by the non-linear relationship defined by Eq.(6
i Pl | x* ] In the case of the eIeve_n_time _series from the reduced data
gi(xF) =gk = o : - (3) set at the NN3 Competitions* is composed only by the
Za Plq] " } past values of/*, for one step ahead forecast.
a q A difference between these two approaches is that, regres-
=t sion models are defined by its coefficient vector, whereas the
being «; positive coefficients satisfyinng‘i1 a; = 1. C-FSM is defined by a set of parameters, including centers
These coefficients can be considered an indirect measurecpf covariance matrice¥; and local models parametefs
relevance for each rule generated during the training pmce: = 1,..., M. Consequentely, while linear models have a

so that, a higher value af; is, indicates that the respectiveclosed form solution for the coefficients, the constructive
rule is more relevant for the modeling task. Besideg,| x¥] one uses an iterative process. Despite this “extra cost’,

in Eq.(3) is defined as an advantage of the model proposed is that, applying the
constructive learning, its structure and parameters dieatk
Pli|x"] = 1 o automatically, decreasing the difficulty of choosing pagam
(2m)P/2 det(V;)1/? ters for building the time series models. The constructive
xexp {7%()& L)V - ci)T} @) learning is detailed as follows.

IIl. CONSTRUCTIVELEARNING OF THEC-FSM

wheredet(-) is the determinant function. Eq. (4) also rep- This paper suggests a constructive offline learning for
resents the conditional probability of activating theth  building a time series model. This algorithm determines



automatically the number of fuzzy rules, as well as its 2) M step: Maximize Eq. (7) and update model parame-

internal parameterg;, V; and6;, i = 1,..., M, which ters, with optimal values given as:
define the entire structure of the model.
The learning algorithm comprises two stages: model ini- o = 1 Zh(c (11)
tialization and adaptation. N
A. First Stage: Model Initialization (N i k) al k
_ T ci= Y hix*) /> bl (12)
First, an initial structure composed by two fuzzy rules =1 =1

(M = 2) is defined, and its parameters are adjusted via
the traditional Expectation Maximization algorithm, adrig B(xh — _ k
nally proposed for mixture of experts models in [6]. The Vi= <Zh x =) (" — e ) /Zh (13)
parameters of these rules are initialized @sis equal to a
pattern from the training set chosen aleatary;= 1/M =
0.5, while V; = 107%I, whereI is the identity matrix.
Coefficientsd; for local models are initialized with random
values betweeif0, 1] and the standard deviation = 1.0.

Based on the EM algorithm, model parameters are adjusted

k=1

fori =1,..., M. Note that the covariance matik; is

a positive semidefined diagonal matrix. This condition
suggests an alternative to simplify the problem and
avoid unfeasible solutions. An optimal solution féyr

is derived solving the following equation:

from a set of N input-output patterns, during an iterative N pk

sequence of EM steps. The goal of the EM algorithm is to Z J—Zg (v — 6" x6;)- 6" =0 (14)
find a set of model parameters, which will maximize the log- k=1 """

likelihood £, of the observed values gf' at each M step of whereo; is the standard deviation for each local output
the learning process. This objective function is defined by y¥, with o2 defined by Eq.(10). After parameters

adjustment, calculate the new value ©¢D, ).
N M 3) If convergence is achieved, then stop the process, else
=> I <Z 9:i(x", C) x P(y" | x*, 91-)) @ return to step 1.
= =t This optimization algorithm applied for model initializan,
where D = {(x*,y*)|k = 1,..., N}, Q contains all model will also be the base for the structure adaptation, durirg th

parameters an(D contains jUSt the antecedents parameter&p plication of adding and pruning operators, as it will be
etailed next.

(centers and covariance matrices). However, for maxirgizin

L(D, Q), it is necessary to estimate the missing dafa B. Second Stage: Adaptation

during the E step. This missing data, according to mixture

; . e Th tructi t of the algorith d ist
of experts theory, is known as the posterior probabilitgbf © constructive part of the aigorithim proposed consisis

bel o th i ) ¢ theth local model in modifying the initial model structure. As it was mentiahe
elong fo the active region o ocal model. before, it is based on the EM algorithm, detailed in Subsec-

When th EM ?Igog'thm IS adagted for adjusting fuzz)ﬁon [lI-A, and on adding and pruning operators. The adding
systems ), may also be interpreted as a posterior estimaig,e oo consists in generating a new rule and incorporate

of membership functions defined by Eq. (3), computed 3Sit in the model structure. The pruning operator consists in

i a;P(i | x*)P(yF | x*, 6;) eliminating an existing rule form the actual model. Thus,
hi = =31 B P (8) if there is some change in the actual structure some EM
Eq:l aqgPg | xM)P(y" | x*, 6,) iterations will be applied, in order to become a new local
fori=1,..., M. These estimates are called as “posterior@ptimal solution, taking into account restrictions and defi
because these are calculated assurpihgk = 1,..., N as nitions given by Egs. (8)-(14). In this way, model structure
known. Moreover, conditional probabilitP(y* | x*, ;) is and parameters will be adjusted and selected automatically
defined by: during the learning process.
1) Adding a new rule: The criteria proposed to judge
PF | xF, 9,) = 1 exp (_ [v" — ny) ) Whether to ggnerate a new rule or no_t is_cglled the if-part
T V2ra? 202 criterion. The if-part criterion evaluates if existing fiyzrules
can cover and cluster input vectors suitably. It means that,
with the variancer; estimated as: each input pattern must belong to a local rule with at least
N N a minimum probability higher than a pre-defined threshold.
_ <Z hE[yk — yf]2> / Z Kk (10) Assuming a normal input data distributior_n with a confi-
dence level ofv%, we can construct a confidence interval

[ci — 2y \/diag( Vi), ¢i + 2y /diag(V;)], wherediag(V;) is

Hence, the EM algorithm for determinir@-FSM param-  the main dlagonal of the covariance mati. In this paper,
eters is summarized as: we get a confidence level of = 72,86% which requires a
1) E step: Estimaté® via Eq. (8); z value of 1.1, from normal distribution table. Obviously,



~ = 72,86% is the middle chunk, leaving 13,57% probabilityalgorithm and Equations (11)—(10) for some iterations. The

excluded in each tail. global process will just stop when convergence is achieved
Suppose that the actual input patterfh has a conditional and there is no more evidence of changes on the model
probability functionP[ i | x* ] = P%, such that structure.
Pl =max (P[i | x Dict.m IV. SIMULATION RESULTS

if P is lower than0.1357, then this pattern does not belong !N this section, the proposed model is applied to build a
to any active region of the fuzzy rules. Thus, the conditiotime series model for two of the eleven time series composing
to generate a new rule may be written as: the reduced data set at the Neural Forecasting Competition

(NN3).
_1.y > 01357 (15) As it was mentioned in Section I, building a time series
model implies a series of tasks to be solved. A strategy
adopted in this work is composed by the next steps:

Pl =max (P[4 | x 1),

If this condition is not satisfied, it means that there willrize

rule that can cluster this input vector. Since the EM leagnin ) i

algorithm guarantees a local optimal solution, a new rule is * Data analysis and pre-processing;

added to the structure, so that the input space partitioldcou * nput selection; o

be improved and a new optimal solution would be reached. « Model structure and parameter estimation;
Suppose that the actual model is composed by a total of* Model verification and evaluation.

M fuzzy _rules. If the condition defined b_y Equation (15) isA. Data analysis and pre-processing

not satisfied for one or more patterns, it means that these

ones are not inside any active region of one of Merules. ~ Time series used in this paper for evaluating t@e

Defining 2 as a set containing all input patterns that do notSM are series NN302 and NN3104, which are part of

satisfy Eq. (15), a new rule will be generated, being its@ent the reduced data set at the Neural Forecasting Competition

initially estimated as: 2006/2007. Series NN302 is composed by a total of 126
1 monthly observations, from January 1979 to June 1989.
Y AR — th (16) Series NN3104 is composed by 133 monthly observations,
No teQ from January 1983 to July 1988. Both series have a seasonal

component, that can be removed applying the following

where N, is the number of input patterns’ in . Indeed, O[ransformation on the original data:

all the other parameters for the new rule will be initialize

as follows: k -
o ONM+41 = 1.0; J(m)
o Oary1 =[¥0 ... 01 (pt1), Wherey is calculated being & . . . . .
. where z(m) is the stationary version of the time series
an average value of the outputs of all pattern$2in
verage val utpu P y*, k = 1,...,126, at the m—th month, for a seasonal
_In. th case Qfai and V;, all these .paranjeters WETe T'®-time series without a trend;*(m) is the k—th observation,
initialized fori =1,..., M +1 according to: wu(m) is the monthly average value angm) is the monthly
o V,; =107"I, wherel is ap x p identity matrix; standard deviation.
e a;=1/(M+1)andM =M + 1; A trend component may be avoided applying a first

It is necessary to re-initialize; and'V; in order to give the difference operation, several times as necessary. In ¢oder
same importance to all rules during parameters adjustmesiétermine the number of times that this operation needs to
and to achieve in that way a suitable input space partitiobe applied, the unit root test was performed. This test, also
taking into account the new rule into the structure. known as the Augmented Dickey-Fuller test (ADF) [11] was
2) Pruning an existing rule:As it can be observed in applied with the help of the Econometric Views software
Equation (11),«; can be considered a measure of th¢l2]. The ADF test provides &statistic that determines the
importance that each fuzzy rule has for the correspondirexistence of unit roots in a regression model of the first
topology, when compared to the other rules. It occurs becaudifference of the series against the series lagged onagedag
«; is proportional to the sum of all posterior probabilities  difference terms and/or a constant and a time trend [12]
over all the training data set. Thus, the more times the rule Therefore, evaluating the time series and comparing the
is strongly activated, the higher its correspondingwill be.  obtained ADFt-statistic versus the reported critical values,
This characteristic will help to determine which rule to behe existence of unit roots was rejected. Then, there is no
pruned. Obviously, if it is necessary to prune some rule arecessity to work with the integrated time series and we
local model, an acceptable candidate will be the one with thast remove the seasonal component. This procedure was
minimum value ofa;. A minimum value fore; is defined, followed for the entire reduced data set, observing that,
so that every rule witly; < «a,,;, at each iteration is pruned for some series (ex. series NN®1), the first difference
and eliminated from the actual model structure. transformation was enough to get its stationary version.
After a modification in the structure is identified (addingThese transformations will be applied for input selectiod a
or pruning), the model will be re-adjusted using the EMor adjusting the time series model.



B. Input selection Advantages applying the PMI criterion for input selection

A suitable set of inputs is selected applying the Fals@'® its capabili_ty of detecting all Iinegr and non.—lin_eair re
Nearest Neighborhood Algorithm - FNN [3] and the Partia/2tions among inputs and outputs variables and its indepen-
Mutual Information Criterion - PMI [5]. dence of modgl structure (linear or non-linear). More detai

The FNN algorithm is used to define an initial set ofc@n be found in [3], [4], [5] and [14]. _
possible inputs and it is based on the reconstruction of the Eds: (19) and (20) are applied iteratively, until the PMI
original space state of a dynamical system from the observ¥glue of a selected input be inferior to a confidence measure.

data (the time series). That is,da-dimensional state space Confidence limit is calculated assuming independence
similar to the original and unknowp—dimensional state @MONg inputs and the output variable, generafirgifferent
space is rebuilt. arrangements qf the independent variable by bootstrapping
For a givend, input patterns ifR? can appear as “neigh- The PMI value is cglcula_lted for each arrangemer_\t and a null
test of hypothesis is built. The PMI value associated to the

bors” in the actual state space because of its projectioms, a

not as a result of the system dynamic, whereas, for a highgih Percentile will be equal to the confidence limit. That
is, if the PMI value of the selected input is greater than

d they move apart. Thus, to detect a suitahlénput patterns , X
the PMI value of theyth percentile sample, it means that

are huilt, ford = 1,2, 3... and so forth, asking at each step, ) o ;
how many patterns in the data set, as seen in dimemsitail there is some significant dependence between the inputs and

to remain close in dimensiod+ 1 [3]. Thend is increased the output variable and, hence, the null test of hypothesis

until there are no more “false neighbors”. Further detaals ¢ Will Pe rejected. In this work, we used = 100 different
be found in [3]. arrangements of the independent variable and 95%.

The FNN algorithm has shown as an interesting technique Initial sets of possible inputs defined by the FNN algorithm
for input selection. However, this algorithm is not able tdOf time series NN3102 and NN3104 were composed by

deal with redundant inputs, due to a selection based dfe first nine and four lagsifyns.i02 = 9, dvns04 = 4),
consecutive lags. In order to verify redundancy and get gSPectively.

reduced number of input vectors, possible inputs defined bP]/TabIe I shows PMI results obtained for both series. In
the FNN algorithm ¢%~1, y*=2 . yk=d) are evaluated the case of the series NNID2, the process stopped at the

via the Partial Mutual Information criterion (PMI) [5]. Fhird step, S,ir;ce_ the PL/” value ob';gined fol,r Igg 9 (?1 possible
Partial mutual information is a measure of the partial OWpUt) was inferior to the PMI confidence limit. In the same

additional information that a new input can add to the exist¥@: the process for series NN®4 was concluded at the
ing prediction model. Given a dependent discrete variable [0Urth step. Thus, a model for the NN®2 time series wil

(the output of the model), and an inpit (the independent have as mqus Iag; 1 and 3, \_/vhereas a time series model for
discrete variable), for a set of pre-existing inpis the NN3-104 series will have as inputs lags 1, 2 and 3.

discrete version of the PMI criterion is defined as: TABLE |
1 N f , /(x( {) FNN-PMI RESULTS FOR SERIESNN3_102AND NN3_.104.
PMI = — Y log, [M} (18) NN3.102 NN3_104
N Fxr(2h) fy (yh) Step | Lag | PMI | Thres. || Lag | PMI [ Thres.
T I [0.7775] 0.1585| 1 | 0.3793[ 0.1411
where: , 2 3 0.2348 | 0.1010 3 0.1705| 0.1058
z; = x; — E(x;|Z) (19) 3 | 9 |00744| 0.0956| 2 | 0.0351| 0.0303
q 4 - - - 4 0.0249 | 0.0322
and: /
=y, — B(y|Z 20
Y=t (:[2) (20) C. Model structure and parameters estimation
H H / !
E(:) denotes the expectation functiom; and y; repre-  agter input selection, model structure is initialized, acd-
sent the residual components, corresponding to ithth g 1o the approach detailed in Section II-A, being model
data pair sample; = 1,.. ,N and f_X' (z3) f?/’.(yi) and _structure and parameters defined automatically applyieg th
Jxr,y (i, ;) are the respective marginal and joint probabilqnsiryctive learning presented in Section I11-B. The para
ity densities. eter a,,;, for both models (NN3L02 and NN3104) was

Using Egs. (19) and (20) the resulting variabfsandY”’  get a5,... = 0.025. Data set was split into two groups, a
repr_esent only the residual _mf_ormatlor_] in variablEsand training set (in sample data) and a testing set (out sample
Y, since the effect of the existing predictorsZnhave been aa) The training set was composed by the first 105 and 94
taken into account [5]. As it can be noticed, good eSt'mat‘?ﬁput-output patterns, for the NNB02 and NN3104 models,
of probability and density functions are necessary ancequitespectively. In both cases, the first 3 observations foh bot
relevant for calculating the PMI criterion. Some modificainodels were lost because of the form of the input patterns.
tions were established in [4], so that some estimates wefg o testing set was composed by the last 18 data pairs,

improved. Thus, expected values are approximated via t8 responding to the last 18 observations of each timesserie
Nadaraya-Watson Estimator [13] and the city block kernel

function, whereas marginal and joint probability funcgon D- Model verification and evaluation
are estimated via kernel functions, due to its efficiency and Autocorrelation and cross correlation checks were applied
robustness, as shown in [5]. for model verification. The first 20 lags of the residual



TABLE Il

GLOBAL PREDICTION ERRORS FOR SERIESBIN3.102AND NN3.104 OF THE REDUCED DATA SET

Series In sample Out of sample Out of sample In sample

1 step ahead 1 step ahead 1 to 18 steps ahead 1 step ahead
NN3.102 k=4,...,108 E=109,...,126 | k=109,...,126 E=4,...,126
NN3_104 k=4,...,97 kE=098,...,115 E=098,...,115 k=4,...,115
Series M | sMAPE | MAE | sMAPE | MAE | sMAPE MAE M | sMAPE | MAE

(%) (u) (%) (u) (%) (u) (%) (u)

NN3.102 | 3 341 179.36 472 287.98 | 11.40 658.05 3 2.95 168.28
NN3.104 | 3 10.98 | 438.27 6.75 33493 12.32 612.32 8 8.89 386.79

autocorrelations and cross correlation coefficients were efor the same time series, with a training set composed by
timated. Based on this analysis for both models, there wengput-output patterns fromk = 4,...,115, is composed by

no evidence of an inadequate modeling.

Symmetric mean absolute percentage ersMAPE (%))
and mean absolute errdvIAE (u)) are calculated for model
evaluation, where: represents the time series unit.

Table Il shows numerical results obtained for one steE
ahead forecasting for in sample data, as well as one
eighteen steps ahead forecasting for the out of sample da
This kind of evaluation is just for having some idea of mode
performance. Table Il also shows the global errors for
one step ahead forecasting over the entire historical da
Predicted values of NN302 and NN3104 are depicted
in Fig. 2. Because it is necessary to use all data availab
for predicting the future 18 values of the time series, a

%C

a total of 8 fuzzy rules.

V. CONCLUSION

In this work, a constructive fuzzy system modeling was
resented for building time series models. The constrectiv
hnique is based on the EM algorithm as well as in adding
Qd pruning operations. These operators were applied to
efine automatically the model structure in an iterativelat
arning process. The model was applied to forecast the
N3.102 and NN3104 time series, which are part of the
reduced data set at the NN3 Competition. Results showed an
Ef!gequate modeling, as well as promising prediction results
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Fig. 2. Multiple steps ahead: (a) Predictions for series NI3. (b)
Predictions for series NN304.

As we can observe in Fig. 2, both models captured the[8]
dynamic of the series, and the future eighteen value seetf#l
to follow historical data adequately. From Table Il, we can
also observe that global errors decrease when the numipgy
of training patterns increases, since the model has more
information for a better adjustment. It is also interesting
realize that, for a different training set, we can get a déffe
time series model, as occurred for time series NI, [13]
where the first model obtained is composedMdy= 3 fuzzy [14]
rules, being its training performed with input-output patis
from k = 4,...,97. On the other hand, the second model

[12]
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