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Abstract— This paper suggests a constructive fuzzy system
modeling for time series prediction. The model proposed is
based on Takagi-Sugeno system and it comprises two phases.
First, a fuzzy rule base structure is initialized and adjusted
via the Expectation Maximization optimization technique (EM).
In the second phase the initial system is modified and the
structure is determined in a constructive fashion. This phase
implements a constructive version of the EM algorithm, as well
as adding and pruning operators. The constructive learning
process reduces model complexity and defines automatically the
structure of the system, providing an efficient time series model.
The performance of the proposed model is verified for two series
of the reduced data set at the Neural Forecasting Competition,
for one to eighteen steps ahead forecasting. Results show the
effectiveness of the constructive time series model.

I. I NTRODUCTION

Currently, there is a vast literature describing models in
the field of time series for a variety of applications, such
as filtering, prediction of future values, simulation or simply
modeling to provide some kind of data description [1]. From
all these tasks, time series prediction is a difficult one that
involves different stages and very challenging problems like
input selection, model generation and model evaluation.

On the one hand, it is common that techniques for building
time serie models be based on linear strategies, considering
only linear dependencies among variables, as the traditional
Box & Jenkins methodology [2]. The drawback of applying
this kind of modeling for nonlinear problems is that they
are almost unable to capture nonlinear relationships among
variables, resulting in models with low performance and poor
prediction results.

On the other hand, non-linear modeling based on neural
and fuzzy techniques have emerged as effective nonlinear
predictor alternatives, since they are able to capture nonlinear
input-output relationships. However, the determination of the
optimal structure is a critical issue that cannot be addressed
analytically. If some understanding of the problem or some
information is available, and the complexity of the function
to map is low, thus, the possibility of finding a topology close
to optimal increases. When the complexity of the problem
goes up, we have to use all the available methods, including
techniques from the statistical theory field.

Time series modeling is a class of problem where the goal
is to approximate an hypothetical function describing the
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behavior of a dynamic system on the basis of observations.
The modeling task is then complicated by the ignorance of
the optimal input space and all the model uncertainties tend
to downgrade the prediction accuracy.

In this paper, the relevant inputs for building time series
models are selected applying a combined methodology based
on the False Nearest Neighborhood algorithm (FNN) [3] and
the one proposed in [4], which is based on the Partial Mutual
Information Criterion (PMI ), originally proposed in [5]. This
approach is applied because it is capable of dealing with non-
linear relationship among variables involved, which is more
appropriate for the problems under study.

It is well known that modeling methods are problem de-
pendant and that any modeling methodology cannot pretend
to be completely universal. At this paper, we suggest a time
series model based on a constructive-fuzzy system modeling
(C-FSM), which is built in two stages. First, an initial model
structure based on two fuzzy rules is generated with available
historical data. The parameters of this structure are adjusted
via a classical Expectation Maximization (EM) algorithm [6].
In the second stage, the initial structure is modified and
refined based on a constructive offline learning and on adding
and pruning operators. Hence, the classical EM algorithm
is adapted as a learning algorithm for fuzzy rule based
systems. This algorithm develops parameters adjustment and
an automatic structure selection simultaneously, which isa
great advantage, when compared with other approaches of
the literature.

The proposed approach is applied to forecast two series
belonging to the reduced data set at the Neural Forecasting
Competition. The constructive models are adjusted, analyzed
and evaluated through a multiple steps ahead forecasting.

The paper is organized as follows. Section II introduces
the structure of theC-FSM. Based on the proposed architec-
ture, Section III details the constructive learning algorithm.
Simulation results are shown in Section IV. Finally, some
conclusions are presented in Section V.

II. STRUCTURE OF THEC-FSM

The structure of theC-FSM is composed by a set ofM
fuzzy rules, which are based on the first order Takagi-Sugeno
(TS) fuzzy system [7], as illustrated in Fig. 1.
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p be the input vector
at instantk, k ∈ Z

+
0 ; ŷk ∈ R the output model, for its

correspondent inputxk.
The purpose is to build a nonparametric model, based on

a fuzzy rules based system, dividing the global problem in
subproblems with a lower complexity degree. This goal is
achieved partitioning the input space intoM subregions.
Each partition is defined by its centerci ∈ R

p and its



covariance matrixVi ∈ R
p×p. Hence, a fuzzy rule is

assigned to each partition, and a local model is adjusted. As
partitions are not roughly defined, every input pattern will
have a membership degreegk

i associated to each subregion.
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Fig. 1. A general structure of theC-FSM, composed by a total ofM
fuzzy rules.

The system emulates a fuzzy reasoning mechanism, en-
coding a fuzzy rules base in the form ofIF <antecedent>
THEN <consequent>. The antecedent part is represented
by a subregion of the input space, and the consequent part is
delineated by a local model. Therefore, thei−th fuzzy rule
is defined as

Rk
i : IF < xk belongs to the “i−th” region with a

membership degreegk
i > THEN < ŷk = yk

i > (1)

whereyk
i , i = 1, . . . ,M , is defined by a local linear model:

yk
i = φk × θi

T (2)

which φk = [1 xk
1 xk

2 . . . xk
p] ∈ R

(p+1) is a vector
composed by thek−th input vector and a constant term;
θi = [θi0 θi1 . . . θip] ∈ R

(p+1) is the coefficients vector for
each local model. Membership degreesgi(x

k) ∈ [0, 1], i =
1, . . . ,M , are computed as:

gi(x
k) = gk

i =
αi · P [ i | xk ]

M
∑

q=1

αq · P [ q | xk ]

(3)

being αi positive coefficients satisfying
∑M

i=1 αi = 1.
These coefficients can be considered an indirect measure of
relevance for each rule generated during the training process,
so that, a higher value ofαi is, indicates that the respective
rule is more relevant for the modeling task. Besides,P [i | xk]
in Eq.(3) is defined as

P [ i | x
k ] =

1

(2π)p/2 det(Vi)1/2
×

×exp

{

−
1

2
(xk − ci)V

−1

i (xk − ci)
T

}

(4)

wheredet(·) is the determinant function. Eq. (4) also rep-
resents the conditional probability of activating thei−th

rule, given the input vectorxk, as well as the parameters
covariance matrixVi and centersci.

Indeed, from Eq.(3),gk
i satisfies the unity condition:

M
∑

i=1

gk
i = 1 (5)

which is a condition necessary to considergk
i as a member-

ship function in fuzzy theory [8].
The output model̂yk is computed as a non-linear combi-

nation among the outputs of the local modelsyk
i and theirs

respective membership degreesgk
i , that is:

ŷk =

M
∑

i=1

gi(x
k) yk

i (6)

Eqs.(2)-(6), have been detailed for a single output. However,
this model can be extended for modeling multiple outputs.
Thus, the proposed model may be interpreted as an inference
mechanism, codified into the model structure, where the
model outputŷk is calculated by means of an aggregated
value of M local linear modelsyk

i , according to Eq. (6).
Notice thatgk

i relies onxk, ci andVi.
Different papers in the literature have done interesting

comparison studies among statistical methods and compu-
tational models based on neural networks and fuzzy systems
(see [9] and [10]). Both, regression models and theC-FSM
model proposed in this work, are used to model a relationship
among variables, commonly represented as

ŷk = f [ xk ] = f [ xk
1 , xk

2 , . . . , xk
p ]

wheref [·] is the functional relationship between independent
(or observable) variablesxk and the dependant variableyk;
ŷk denotes the estimated value ofyk. Following this, the
goal of the modelC-FSM is to predict the single dependent
variableyk from its input variablexk, generally composed
by lagged realizations of its output. This predicted valueŷk is
represented by the non-linear relationship defined by Eq.(6).
In the case of the eleven time series from the reduced data
set at the NN3 Competition,xk is composed only by the
past values ofyk, for one step ahead forecast.

A difference between these two approaches is that, regres-
sion models are defined by its coefficient vector, whereas the
C-FSM is defined by a set of parameters, including centers
ci, covariance matricesVi and local models parametersθi,
i = 1, . . . ,M . Consequentely, while linear models have a
closed form solution for the coefficients, the constructive
one uses an iterative process. Despite this “extra cost”,
an advantage of the model proposed is that, applying the
constructive learning, its structure and parameters are defined
automatically, decreasing the difficulty of choosing parame-
ters for building the time series models. The constructive
learning is detailed as follows.

III. C ONSTRUCTIVELEARNING OF THEC-FSM

This paper suggests a constructive offline learning for
building a time series model. This algorithm determines



automatically the number of fuzzy rules, as well as its
internal parametersci, Vi and θi, i = 1, . . . ,M , which
define the entire structure of the model.

The learning algorithm comprises two stages: model ini-
tialization and adaptation.

A. First Stage: Model Initialization

First, an initial structure composed by two fuzzy rules
(M = 2) is defined, and its parameters are adjusted via
the traditional Expectation Maximization algorithm, origi-
nally proposed for mixture of experts models in [6]. The
parameters of these rules are initialized as:ci is equal to a
pattern from the training set chosen aleatory;αi = 1/M =
0.5, while Vi = 10−4I, where I is the identity matrix.
Coefficientsθi for local models are initialized with random
values between[0, 1] and the standard deviationσi = 1.0.

Based on the EM algorithm, model parameters are adjusted
from a set ofN input-output patterns, during an iterative
sequence of EM steps. The goal of the EM algorithm is to
find a set of model parameters, which will maximize the log-
likelihood L, of the observed values ofyk at each M step of
the learning process. This objective function is defined by

L(D, Ω) =
N

∑

k=1

ln

(

M
∑

i=1

gi(x
k
, C) × P (yk | x

k
, θi)

)

(7)

whereD = {(xk, yk)|k = 1, . . . , N}, Ω contains all model
parameters andC contains just the antecedents parameters
(centers and covariance matrices). However, for maximizing
L(D, Ω), it is necessary to estimate the missing datahk

i

during the E step. This missing data, according to mixture
of experts theory, is known as the posterior probability ofxk

belong to the active region of thei−th local model.
When the EM algorithm is adapted for adjusting fuzzy

systems,hk
i may also be interpreted as a posterior estimate

of membership functions defined by Eq. (3), computed as

hk
i =

αiP (i | xk)P (yk | xk, θi)
∑M

q=1 αqP (q | xk)P (yk | xk, θq)
(8)

for i = 1, . . . ,M . These estimates are called as “posterior”,
because these are calculated assumingyk, k = 1, . . . , N as
known. Moreover, conditional probabilityP (yk | xk, θi) is
defined by:

P (yk | xk, θi) =
1

√

2πσ2
i

exp

(

−
[yk − yk

i ]2

2σ2
i

)

(9)

with the varianceσ2
i estimated as:

σ2
i =

(

N
∑

k=1

hk
i [yk − yk

i ]2

)

/
N

∑

k=1

hk
i (10)

Hence, the EM algorithm for determiningC-FSM param-
eters is summarized as:

1) E step: Estimatehk
i via Eq. (8);

2) M step: Maximize Eq. (7) and update model parame-
ters, with optimal values given as:

αi =
1

N

N
∑

k=1

hk
i (11)

ci =

(

N
∑

k=1

hk
i x

k

)

/
N

∑

k=1

hk
i (12)

Vi =

(

N
∑

k=1

hk
i (xk − ci)

′(xk − ci)

)

/

N
∑

k=1

hk
i (13)

for i = 1, . . . ,M . Note that the covariance matrixVi is
a positive semidefined diagonal matrix. This condition
suggests an alternative to simplify the problem and
avoid unfeasible solutions. An optimal solution forθi

is derived solving the following equation:

N
∑

k=1

hk
i

σ2
i

(

yk − φk × θi

)

· φk = 0 (14)

whereσi is the standard deviation for each local output
yk

i , with σ2
i defined by Eq.(10). After parameters

adjustment, calculate the new value forL(D, Ω).
3) If convergence is achieved, then stop the process, else

return to step 1.

This optimization algorithm applied for model initialization,
will also be the base for the structure adaptation, during the
application of adding and pruning operators, as it will be
detailed next.

B. Second Stage: Adaptation

The constructive part of the algorithm proposed consists
in modifying the initial model structure. As it was mentioned
before, it is based on the EM algorithm, detailed in Subsec-
tion III-A, and on adding and pruning operators. The adding
operator consists in generating a new rule and incorporate
it in the model structure. The pruning operator consists in
eliminating an existing rule form the actual model. Thus,
if there is some change in the actual structure some EM
iterations will be applied, in order to become a new local
optimal solution, taking into account restrictions and defi-
nitions given by Eqs. (8)-(14). In this way, model structure
and parameters will be adjusted and selected automatically
during the learning process.

1) Adding a new rule:The criteria proposed to judge
whether to generate a new rule or not is called the if-part
criterion. The if-part criterion evaluates if existing fuzzy rules
can cover and cluster input vectors suitably. It means that,
each input pattern must belong to a local rule with at least
a minimum probability higher than a pre-defined threshold.

Assuming a normal input data distribution, with a confi-
dence level ofγ%, we can construct a confidence interval
[ci−zγ

√

diag(Vi), ci +zγ

√

diag(Vi)], wherediag(Vi) is
the main diagonal of the covariance matrixVi. In this paper,
we get a confidence level ofγ = 72, 86% which requires a
zγ value of 1.1, from normal distribution table. Obviously,



γ = 72, 86% is the middle chunk, leaving 13,57% probability
excluded in each tail.

Suppose that the actual input patternxk has a conditional
probability functionP [ i | xk ] = P k

i∗ , such that

P k
i∗ = max

(

P [ i | xk ]
)

i=1,...,M

if P k
i∗ is lower than0.1357, then this pattern does not belong

to any active region of the fuzzy rules. Thus, the condition
to generate a new rule may be written as:

P k
i∗ = max

(

P [ i | xk ]
)

i=1,...,M
> 0.1357 (15)

If this condition is not satisfied, it means that there will beno
rule that can cluster this input vector. Since the EM learning
algorithm guarantees a local optimal solution, a new rule is
added to the structure, so that the input space partition could
be improved and a new optimal solution would be reached.

Suppose that the actual model is composed by a total of
M fuzzy rules. If the condition defined by Equation (15) is
not satisfied for one or more patterns, it means that these
ones are not inside any active region of one of theM rules.
Defining Ω as a set containing all input patterns that do not
satisfy Eq. (15), a new rule will be generated, being its center
initially estimated as:

cM+1 =
1

NΩ

∑

t∈Ω

xt (16)

whereNΩ is the number of input patternsxt in Ω. Indeed,
all the other parameters for the new rule will be initialized
as follows:

• σM+1 = 1.0;
• θM+1 = [ȳ 0 . . . 0]1×(p+1), whereȳ is calculated being

an average value of the outputs of all patterns inΩ.

In the case ofαi and Vi, all these parameters were re-
initialized for i = 1, . . . ,M + 1 according to:

• Vi = 10−4I, whereI is a p × p identity matrix;
• αi = 1/(M + 1) andM = M + 1;

It is necessary to re-initializeαi andVi in order to give the
same importance to all rules during parameters adjustment
and to achieve in that way a suitable input space partition,
taking into account the new rule into the structure.

2) Pruning an existing rule:As it can be observed in
Equation (11),αi can be considered a measure of the
importance that each fuzzy rule has for the corresponding
topology, when compared to the other rules. It occurs because
αi is proportional to the sum of all posterior probabilitieshk

i

over all the training data set. Thus, the more times the rule
is strongly activated, the higher its correspondingαi will be.

This characteristic will help to determine which rule to be
pruned. Obviously, if it is necessary to prune some rule or
local model, an acceptable candidate will be the one with the
minimum value ofαi. A minimum value forαi is defined,
so that every rule withαi < αmin at each iteration is pruned
and eliminated from the actual model structure.

After a modification in the structure is identified (adding
or pruning), the model will be re-adjusted using the EM

algorithm and Equations (11)–(10) for some iterations. The
global process will just stop when convergence is achieved
and there is no more evidence of changes on the model
structure.

IV. SIMULATION RESULTS

In this section, the proposed model is applied to build a
time series model for two of the eleven time series composing
the reduced data set at the Neural Forecasting Competition
(NN3).

As it was mentioned in Section I, building a time series
model implies a series of tasks to be solved. A strategy
adopted in this work is composed by the next steps:

• Data analysis and pre-processing;
• Input selection;
• Model structure and parameter estimation;
• Model verification and evaluation.

A. Data analysis and pre-processing

Time series used in this paper for evaluating theC-
FSM are series NN3102 and NN3104, which are part of
the reduced data set at the Neural Forecasting Competition
2006/2007. Series NN3102 is composed by a total of 126
monthly observations, from January 1979 to June 1989.
Series NN3104 is composed by 133 monthly observations,
from January 1983 to July 1988. Both series have a seasonal
component, that can be removed applying the following
transformation on the original data:

zk(m) =
yk(m) − µ(m)

σ(m)
(17)

where zk(m) is the stationary version of the time series
yk, k = 1, . . . , 126, at the m−th month, for a seasonal
time series without a trend;yk(m) is thek−th observation,
µ(m) is the monthly average value andσ(m) is the monthly
standard deviation.

A trend component may be avoided applying a first
difference operation, several times as necessary. In orderto
determine the number of times that this operation needs to
be applied, the unit root test was performed. This test, also
known as the Augmented Dickey-Fuller test (ADF) [11] was
applied with the help of the Econometric Views software
[12]. The ADF test provides at-statistic that determines the
existence of unit roots in a regression model of the first
difference of the series against the series lagged once, lagged
difference terms and/or a constant and a time trend [12]

Therefore, evaluating the time series and comparing the
obtained ADFt-statistic versus the reported critical values,
the existence of unit roots was rejected. Then, there is no
necessity to work with the integrated time series and we
just remove the seasonal component. This procedure was
followed for the entire reduced data set, observing that,
for some series (ex. series NN3101), the first difference
transformation was enough to get its stationary version.
These transformations will be applied for input selection and
for adjusting the time series model.



B. Input selection

A suitable set of inputs is selected applying the False
Nearest Neighborhood Algorithm - FNN [3] and the Partial
Mutual Information Criterion - PMI [5].

The FNN algorithm is used to define an initial set of
possible inputs and it is based on the reconstruction of the
original space state of a dynamical system from the observed
data (the time series). That is, ad−dimensional state space
similar to the original and unknownp−dimensional state
space is rebuilt.

For a givend, input patterns inRd can appear as “neigh-
bors” in the actual state space because of its projections, and
not as a result of the system dynamic, whereas, for a higher
d they move apart. Thus, to detect a suitabled, input patterns
are built, ford = 1, 2, 3 . . . and so forth, asking at each step,
how many patterns in the data set, as seen in dimensiond, fail
to remain close in dimensiond + 1 [3]. Thend is increased
until there are no more “false neighbors”. Further details can
be found in [3].

The FNN algorithm has shown as an interesting technique
for input selection. However, this algorithm is not able to
deal with redundant inputs, due to a selection based on
consecutive lags. In order to verify redundancy and get a
reduced number of input vectors, possible inputs defined by
the FNN algorithm (yk−1, yk−2, . . . ,yk−d) are evaluated
via the Partial Mutual Information criterion (PMI) [5].

Partial mutual information is a measure of the partial or
additional information that a new input can add to the exist-
ing prediction model. Given a dependent discrete variableY
(the output of the model), and an inputX (the independent
discrete variable), for a set of pre-existing inputsZ, the
discrete version of the PMI criterion is defined as:

PMI =
1

N

N
∑

i=1

loge

[

fX′,Y ′(x′

i, y
′

i)

fX′(x′

i)fY ′(y′

i)

]

(18)

where:
x′

i = xi − E(xi|Z) (19)

and:
y′

i = yi − E(yi|Z) (20)

E(·) denotes the expectation function,x′

i and y′

i repre-
sent the residual components, corresponding to thei−th
data pair sample,i = 1, . . . , N , and fX′(xi) fY ′(yi) and
fX′,Y ′(xi, yi) are the respective marginal and joint probabil-
ity densities.

Using Eqs. (19) and (20) the resulting variablesX ′ andY ′

represent only the residual information in variablesX and
Y , since the effect of the existing predictors inZ have been
taken into account [5]. As it can be noticed, good estimates
of probability and density functions are necessary and quite
relevant for calculating the PMI criterion. Some modifica-
tions were established in [4], so that some estimates were
improved. Thus, expected values are approximated via the
Nadaraya-Watson Estimator [13] and the city block kernel
function, whereas marginal and joint probability functions
are estimated via kernel functions, due to its efficiency and
robustness, as shown in [5].

Advantages applying the PMI criterion for input selection
are its capability of detecting all linear and non-linear re-
lations among inputs and outputs variables and its indepen-
dence of model structure (linear or non-linear). More details
can be found in [3], [4], [5] and [14].

Eqs. (19) and (20) are applied iteratively, until the PMI
value of a selected input be inferior to a confidence measure.

Confidence limit is calculated assuming independence
among inputs and the output variable, generatingp different
arrangements of the independent variable by bootstrapping.
The PMI value is calculated for each arrangement and a null
test of hypothesis is built. The PMI value associated to the
γth percentile will be equal to the confidence limit. That
is, if the PMI value of the selected input is greater than
the PMI value of theγth percentile sample, it means that
there is some significant dependence between the inputs and
the output variable and, hence, the null test of hypothesis
will be rejected. In this work, we usedp = 100 different
arrangements of the independent variable andγ = 95%.

Initial sets of possible inputs defined by the FNN algorithm
for time series NN3102 and NN3104 were composed by
the first nine and four lags (dNN3 102 = 9, dNN3 104 = 4),
respectively.

Table I shows PMI results obtained for both series. In
the case of the series NN3102, the process stopped at the
third step, since the PMI value obtained for lag 9 (a possible
input) was inferior to the PMI confidence limit. In the same
way, the process for series NN3104 was concluded at the
fourth step. Thus, a model for the NN3102 time series will
have as inputs lags 1 and 3, whereas a time series model for
NN3 104 series will have as inputs lags 1, 2 and 3.

TABLE I

FNN-PMI RESULTS FOR SERIESNN3 102 AND NN3 104.
NN3 102 NN3 104

Step Lag PMI Thres. Lag PMI Thres.
1 1 0.7775 0.1585 1 0.3793 0.1411
2 3 0.2348 0.1010 3 0.1705 0.1058
3 9 0.0744 0.0956 2 0.0351 0.0303
4 - - - 4 0.0249 0.0322

C. Model structure and parameters estimation

After input selection, model structure is initialized, accord-
ing to the approach detailed in Section III-A, being model
structure and parameters defined automatically applying the
constructive learning presented in Section III-B. The param-
eter αmin for both models (NN3102 and NN3104) was
set asαmin = 0.025. Data set was split into two groups, a
training set (in sample data) and a testing set (out sample
data). The training set was composed by the first 105 and 94
input-output patterns, for the NN3102 and NN3104 models,
respectively. In both cases, the first 3 observations for both
models were lost because of the form of the input patterns.
The testing set was composed by the last 18 data pairs,
corresponding to the last 18 observations of each time series.

D. Model verification and evaluation

Autocorrelation and cross correlation checks were applied
for model verification. The first 20 lags of the residual



TABLE II

GLOBAL PREDICTION ERRORS FOR SERIESNN3 102 AND NN3 104 OF THE REDUCED DATA SET

Series In sample Out of sample Out of sample In sample
1 step ahead 1 step ahead 1 to 18 steps ahead 1 step ahead

NN3 102 k = 4, . . . , 108 k = 109, . . . , 126 k = 109, . . . , 126 k = 4, . . . , 126
NN3 104 k = 4, . . . , 97 k = 98, . . . , 115 k = 98, . . . , 115 k = 4, . . . , 115

Series M sMAPE MAE sMAPE MAE sMAPE MAE M sMAPE MAE
(%) (u) (%) (u) (%) (u) (%) (u)

NN3 102 3 3.41 179.36 4.72 287.98 11.40 658.05 3 2.95 168.28
NN3 104 3 10.98 438.27 6.75 334.93 12.32 612.32 8 8.89 386.79

autocorrelations and cross correlation coefficients were es-
timated. Based on this analysis for both models, there were
no evidence of an inadequate modeling.

Symmetric mean absolute percentage error (sMAPE (%))
and mean absolute error (MAE (u)) are calculated for model
evaluation, whereu represents the time series unit.

Table II shows numerical results obtained for one step
ahead forecasting for in sample data, as well as one to
eighteen steps ahead forecasting for the out of sample data.
This kind of evaluation is just for having some idea of model
performance. Table II also shows the global errors for a
one step ahead forecasting over the entire historical data.
Predicted values of NN3102 and NN3104 are depicted
in Fig. 2. Because it is necessary to use all data available
for predicting the future 18 values of the time series, a
second training was performed. These future values are also
illustrated in Fig 2.
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Fig. 2. Multiple steps ahead: (a) Predictions for series NN3102. (b)
Predictions for series NN3104.

As we can observe in Fig. 2, both models captured the
dynamic of the series, and the future eighteen value seem
to follow historical data adequately. From Table II, we can
also observe that global errors decrease when the number
of training patterns increases, since the model has more
information for a better adjustment. It is also interestingto
realize that, for a different training set, we can get a different
time series model, as occurred for time series NN3104,
where the first model obtained is composed byM = 3 fuzzy
rules, being its training performed with input-output patterns
from k = 4, . . . , 97. On the other hand, the second model

for the same time series, with a training set composed by
input-output patterns fromk = 4, . . . , 115, is composed by
a total of 8 fuzzy rules.

V. CONCLUSION

In this work, a constructive fuzzy system modeling was
presented for building time series models. The constructive
technique is based on the EM algorithm as well as in adding
and pruning operations. These operators were applied to
define automatically the model structure in an iterative batch
learning process. The model was applied to forecast the
NN3 102 and NN3104 time series, which are part of the
reduced data set at the NN3 Competition. Results showed an
adequate modeling, as well as promising prediction results.
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